畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (8): 3173-3182.doi: 10.11843/j.issn.0366-6964.2023.08.005
吴志立, 姚军虎, 雷新建*
收稿日期:
2022-12-16
出版日期:
2023-08-23
发布日期:
2023-08-22
通讯作者:
雷新建,主要从事反刍动物营养调控研究,E-mail:leixinjian@nwafu.edu.cn
作者简介:
吴志立(2001-),男,江西丰城人,本科生,主要从事动物科学研究,E-mail:wzl1295354914@163.com
基金资助:
WU Zhili, YAO Junhu, LEI Xinjian*
Received:
2022-12-16
Online:
2023-08-23
Published:
2023-08-22
摘要: 围产期奶畜的干物质采食量明显下降,同时还需要满足妊娠后期胎儿快速生长发育以及泌乳前期乳汁合成分泌的营养需求,导致奶畜能量代谢紊乱。能量代谢紊乱可引发多种代谢性疾病和炎性疾病,对奶畜生产性能和繁殖机能造成重大负面影响。过瘤胃葡萄糖(rumen-protected glucose,RPG)在消化过程中受瘤胃影响小,可在小肠部位高效吸收进入血液并提供安全高效的能量来源,以此缓解奶畜在围产期出现的不良反应。本文总结了围产期的生理代谢特点,综述了RPG对围产期能量代谢、产奶量、乳成分、氧化应激、免疫和炎症的影响及其机制,并对RPG生物利用率进行了简要评价,以期为RPG在围产期奶畜营养调控中的研究与应用提供参考。
中图分类号:
吴志立, 姚军虎, 雷新建. 过瘤胃葡萄糖对围产期奶畜营养调控的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3173-3182.
WU Zhili, YAO Junhu, LEI Xinjian. Research Progress of Rumen-protected Glucose on Nutritional Regulation in Perinatal Dairy Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3173-3182.
[1] | KABIR M, HASAN M M, TANNI N S, et al.Metabolic profiling in periparturient dairy cows and its relation with metabolic diseases[J].BMC Res Notes, 2022, 15(1):231. |
[2] | CECILIANI F, LECCHI C, URH C, et al.Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows[J].J Proteomics, 2018, 178:92-106. |
[3] | ABUELO A, HERNÁNDEZ J, BENEDITO J L, et al.Redox biology in transition periods of dairy cattle:role in the health of periparturient and neonatal animals[J].Antioxidants (Basel), 2019, 8(1):20. |
[4] | 姚军虎, 曹阳春, 蔡传江.奶畜能量代谢调控机理与措施[J].饲料工业, 2015, 36(17):1-7.YAO J H, CAO Y C, CAI C J.Research advance of the regulation of glucose metabolism in dairy cow and goats[J].Feed Industry, 2015, 36(17):1-7.(in Chinese) |
[5] | LI W Q, BU D P, WANG J Q, et al.Effect of two different diets on liver gene expression associated with glucose metabolism in dairy cows[J].Livest Sci, 2013, 158(1-3):223-229. |
[6] | BELL A W.Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation.[J].J Anim Sci, 1995, 73(9):2804-2819. |
[7] | 张 帆, 呙于明, 熊本海.围产期奶牛能量负平衡营养调控研究进展[J].动物营养学报, 2020, 32(7):2966-2974.ZHANG F, GUO Y M, XIONG B H.Research progress on nutritional regulation of negative energy balance in dairy cows during transition period[J].Chinese Journal of Animal Nutrition, 2020, 32(7):2966-2974.(in Chinese) |
[8] | SAULS-HIESTERMAN J A, BANUELOS S, ATANASOV B, et al.Physiologic responses to feeding rumen-protected glucose to lactating dairy cows[J].Anim Reprod Sci, 2020, 216:106346. |
[9] | ZHANG X L, LI X P, WU J, et al.Rumen-protected glucose supplementation in transition dairy cows shifts fermentation patterns and enhances mucosal immunity[J].Anim Nutr, 2021, 7(4):1182-1188. |
[10] | BARCELOS B, GOMES V, VIDAL A M C, et al.Effect of selenium and vitamin E supplementation on the metabolic status of dairy goats and respective goat kids in the peripartum period[J].Trop Anim Health Prod, 2022, 54(1):36. |
[11] | GHAVIPANJE N, FATHI NASRI M H, FARHANGFAR S H, et al.Pre-and post-partum berberine supplementation in dairy goats as a novel strategy to mitigate oxidative stress and inflammation[J].Front Vet Sci, 2021, 8:743455. |
[12] | RIGOUT S, LEMOSQUET S, VAN EYS J E, et al.Duodenal glucose increases glucose fluxes and lactose synthesis in grass silage-fed dairy cows[J].J Dairy Sci, 2002, 85(3):595-606. |
[13] | DE KOSTER J D, OPSOMER G.Insulin resistance in dairy cows[J].Vet Clin North Am Food Anim Pract, 2013, 29(2):299-322. |
[14] | NAFIKOV R A, AMETAJ B N, BOBE G, et al.Prevention of fatty liver in transition dairy cows by subcutaneous injections of glucagon[J].J Dairy Sci, 2006, 89(5):1533-1545. |
[15] | 秦 敏, 张 辉, 史彬林, 等.不同泌乳阶段奶牛血清营养状况指标与抗氧化指标的检测及其多元回归分析[J].动物营养学报, 2018, 30(9):3524-3534.QIN M, ZHANG H, SHI B L, et al.Multiple regression analysis on serum nutritional status indexes and antioxidan tindexes in different lactation stages of dairy cows[J].Chinese Journal of Animal Nutrition, 2018, 30(9):3524-3534.(in Chinese) |
[16] | HUANG Y, WEN J, KONG Y Z, et al.Oxidative status in dairy goats:periparturient variation and changes in subclinical hyperketonemia and hypocalcemia[J].BMC Vet Res, 2021, 17(1):238. |
[17] | KVIDERA S K, HORST E A, ABUAJAMIEH M, et al.Glucose requirements of an activated immune system in lactating Holstein cows[J].J Dairy Sci, 2017, 100(3):2360-2374. |
[18] | 孙菲菲, 曹阳春, 姚军虎.奶牛围产期葡萄糖营养平衡及其调控研究进展[J].饲料工业, 2013, 34(15):46-50.SUN F F, CAO Y C, YAO J H.Research advances in glucose balance and regulation for perinatal dairy cattle[J].Feed Industry, 2013, 34(15):46-50.(in Chinese) |
[19] | ASCHENBACH J R, KRISTENSEN N B, DONKIN S S, et al.Gluconeogenesis in dairy cows:the secret of making sweet milk from sour dough[J].IUBMB Life, 2010, 62(12):869-877. |
[20] | ANNISON E F, LINZELL J L.The oxidation and utilization of glucose and acetate by the mammary gland of the goat in relation to their over-all metabolism and to milk formation[J].J Physiol, 1964, 175(3):372-385. |
[21] | KRONFELD D S.Major metabolic determinants of milk volume, mammary efficiency, and spontaneous ketosis in dairy cows[J].J Dairy Sci, 1982, 65(11):2204-2212. |
[22] | 桑 丹, 娜美日嘎, 孙海洲, 等.5-羟色胺前体物对围产期母羊泌乳性能及血浆生化指标的影响[J].动物营养学报, 2019, 31(12):5601-5612.SANG D, NAMIRGA, SUN H Z, et al.Effects of 5-hydroxytryptamine precursor on lactation performance and plasma biochemical indexes of perinatal ewes[J].Chinese Journal of Animal Nutrition, 2019, 31(12):5601-5612.(in Chinese) |
[23] | GHAVIPANJE N, NASRI M H F, FARHANGFAR S H, et al.Regulation of nutritional metabolism in transition dairy goats:energy balance, liver activity, and insulin resistance in response to berberine supplementation[J].Animals, 2021, 11(8):2236. |
[24] | ZECHNER R, KIENESBERGER P C, HAEMMERLE G, et al.Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores[J].J Lipid Res, 2009, 50(1):3-21. |
[25] | CONTRERAS G A, STRIEDER-BARBOZA C, DE KOSTER J.Symposium review:Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows[J].J Dairy Sci, 2018, 101(3):2737-2752. |
[26] | KUPCZYŃSKI R, SZUMNY A, WUJCIKOWSKA K, et al.Metabolism, ketosis treatment and milk production after using glycerol in dairy cows:a review[J].Animals, 2020, 10(8):1379. |
[27] | SUN F F, CAO Y C, CAI C J, et al.Regulation of nutritional metabolism in transition dairy cows:energy homeostasis and health in response to post-ruminal choline and methionine[J].PLoS One, 2016, 11(8):e0160659. |
[28] | TESSARI R, BERLANDA M, MORGANTE M, et al.Changes of plasma fatty acids in four lipid classes to understand energy metabolism at different levels of non-esterified fatty acid (NEFA) in dairy cows[J].Animals, 2020, 10(8):1410. |
[29] | SORDILLO L M, RAPHAEL W.Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders[J].Vet Clin North Am Food Anim Pract, 2013, 29(2):267-278. |
[30] | BOBE G, YOUNG J W, BEITZ D C.Invited review:pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J].J Dairy Sci, 2004, 87(10):3105-3124. |
[31] | ZAMUNER F, DIGIACOMO K, CAMERON A W N, et al.Short communication:Associations between nonesterified fatty acids, β-hydroxybutyrate, and glucose in periparturient dairy goats[J].J Dairy Sci, 2020, 103(7):6672-6678. |
[32] | ZAMUNER F, DIGIACOMO K, CAMERON A W N, et al.Endocrine and metabolic status of commercial dairy goats during the transition period[J].J Dairy Sci, 2020, 103(6):5616-5628. |
[33] | CONTRERAS G A, SORDILLO L M.Lipid mobilization and inflammatory responses during the transition period of dairy cows[J].Comp Immunol Microbiol Infect Dis, 2011, 34(3):281-289. |
[34] | ZACHUT M, CONTRERAS G A.Symposium review:Mechanistic insights into adipose tissue inflammation and oxidative stress in periparturient dairy cows[J].J Dairy Sci, 2022, 105(4):3670-3686. |
[35] | BELL A W, BURHANS W S, OVERTON T R.Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows[J].Proc Nutr Soc, 2000, 59(1):119-126. |
[36] | REID I M, ROBERTS C J, BAIRD G D.The effects of underfeeding during pregnancy and lactation on structure and chemistry of bovine liver and muscle[J].J Agric Sci, 1980, 94(1):239-245. |
[37] | LEAN I J, VAN SAUN R, DEGARIS P J.Energy and protein nutrition management of transition dairy cows[J].Vet Clin North Am Food Anim Pract, 2013, 29(2):337-366. |
[38] | LARSEN M, KRISTENSEN N B.Precursors for liver gluconeogenesis in periparturient dairy cows[J].Animal, 2013, 7(10):1640-1650. |
[39] | BROWN W E, ALLEN M S.Effects of intrajugular glucose infusion on feed intake, milk yield, and metabolic responses of early postpartum cows fed diets varying in protein and starch concentration[J].J Dairy Sci, 2013, 96(11):7132-7142. |
[40] | VIEIRA F V R, LOPES C N, CAPPELLOZZA B I, et al.Effects of intravenous glucose infusion and nutritional balance on serum concentrations of nonesterified fatty acids, glucose, insulin, and progesterone in nonlactating dairy cows[J].J Dairy Sci, 2010, 93(7):3047-3055. |
[41] | LARSEN M, KRISTENSEN N B.Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows[J].J Dairy Sci, 2009, 92(3):1071-1083. |
[42] | HUHTANEN P, VANHATALO A, VARVIKKO T.Effects of abomasal infusions of histidine, glucose, and leucine on milk production and plasma metabolites of dairy cows fed grass silage diets[J].J Dairy Sci, 2002, 85(1):204-216. |
[43] | ESPOSITO G, IRONS P C, WEBB E C, et al.Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows[J].Anim Reprod Sci, 2014, 144(3-4):60-71. |
[44] | 刘春海, 韩建林, 陶春卫.浅析奶牛产后葡萄糖代谢失衡理论[J].中国奶牛, 2017(1):8-12.LIU C H, HAN J L, TAO C W.The imbalance and regulation of glucose metabolism in postpartum dairy cows[J].China Dairy Cattle, 2017(1):8-12.(in Chinese) |
[45] | ROCHE J R, BURKE C R, CROOKENDEN M A, et al.Fertility and the transition dairy cow[J].Reprod Fertil Dev, 2017, 30(1):85-100. |
[46] | 王亚品.过瘤胃葡萄糖对泌乳早期奶牛胃肠道功能及机体代谢的影响[D].北京:中国农业科学院, 2021.WANG Y P.Effects of different doses of rumen-protected glucose on gastrointestinal function and body metabolism of early lactation dairy cows[D].Beijing:Chinese Academy of Agricultural Sciences, 2021.(in Chinese) |
[47] | 薛 倩.瘤胃保护葡萄糖的制备及在奶牛围产后期的应用研究[D].保定:河北农业大学, 2015.XUE Q.The study about production of rumen protected glucose and its application during postpartum period in dairy cows[D].Baoding:Hebei Agricultural University, 2015.(in Chinese) |
[48] | 李徐延, 张洪友, 夏 成, 等.过瘤胃脂肪和过瘤胃葡萄糖防治奶牛隐性酮病的效果[J].甘肃畜牧兽医, 2008, 38(5):16-18.LI X Y, ZHANG H Y, XIA C, et al.The prevention and cure of rumen protected fat and protected glucose on cows' subclinical ketosis[J].Gansu Animal Husbandry and Veterinary Medicine, 2008, 38(5):16-18.(in Chinese) |
[49] | 韩文龙, 周姝延, 包 凯, 等.过瘤胃葡萄糖和过瘤胃脂肪预混剂对奶牛亚临床酮病治疗效果评价[J].黑龙江畜牧兽医, 2014(5):138-140.HAN W L, ZHOU S Y, BAO K, et al.Evaluation of rrumen-protected glucose and rrumen-protected fat premixes on subclinical ketosis treatment in dairy cows[J].Heilongjiang Animal Science and Veterinary Medicine, 2014(5):138-140.(in Chinese) |
[50] | 李 影, 李徐延, 张洪友, 等.过瘤胃葡萄糖对奶牛能量代谢的影响[J].中国兽医杂志, 2014, 50(1):6-8.LI Y, LI X Y, ZHANG H Y, et al.The effect of rumen bypass glucose on energy metabolism of dairy cows[J].Chinese Journal of Veterinary Medicine, 2014, 50(1):6-8.(in Chinese) |
[51] | 刘 骞, 张洪友, 李徐延, 等.过瘤胃葡萄糖对泌乳早期奶牛血液生化指标的影响[J].黑龙江八一农垦大学学报, 2009, 21(6):39-42.LIU Q, ZHANG H Y, LI X Y, et al.Effect of rumen bypass glucose on blood biochemical parameters of cows during early lactation[J].Journal of Heilongjiang Bayi Agricultural University, 2009, 21(6):39-42.(in Chinese) |
[52] | 李徐延.过瘤胃脂肪和过瘤胃葡萄糖对奶牛生产性能和能量代谢的影响[D].大庆:黑龙江八一农垦大学, 2009.LI X Y.The effect on production performance and energy metabolism for dairy cows with rumen bypass fat and rumen bypass glucose[D].Daqing:Heilongjiang Bayi Agricultural University, 2009.(in Chinese) |
[53] | 李 妍, 薛 倩, 高艳霞, 等.瘤胃保护葡萄糖对围产后期荷斯坦奶牛生产性能及血清生化指标的影响[J].畜牧兽医学报, 2016, 47(1):113-119.LI Y, XUE Q, GAO Y X, et al.Effects of rumen-protected glucose on performance and blood biochemical parameters during postpartum period in dairy cows[J].Acta Veterinaria et Zootechnica Sinica, 2016, 47(1):113-119.(in Chinese) |
[54] | ALI GOLDANSAZ S, GUO A C, SAJED T, et al.Livestock metabolomics and the livestock metabolome:A systematic review[J].PLoS One, 2017, 12(5):e0177675. |
[55] | WANG Y P, CAI M, HUA D K, et al.Metabolomics reveals effects of rumen-protected glucose on metabolism of dairy cows in early lactation[J].Anim Feed Sci Technol, 2020, 269:114620. |
[56] | BENAK S,[XC未标题-13.TIF;%67%67;S+0.5mm, JZ] IDARA M, GANTNER V, et al.The effect of dietary supplementation of rumen protected glucose on metabolic parameters and milk quality in dairy cows[C]//30th Scientific-Expert Conference of Agriculture and Food Industry.Cham:Springer, 2020, 78:148-154. |
[57] | LI X P, TAN Z L, LI Z C, et al.Metabolomic changes in the liver tissues of cows in early lactation supplemented with dietary rumen-protected glucose during the transition period[J].Anim Feed Sci Technol, 2021, 281:115093. |
[58] | MA Z Y, FANG L Y, UNGERFELD E, et al.Supplementation of rumen-protected glucose increased the risk of disturbance of hepatic metabolism in early postpartum Holstein cows[J].Antioxidants (Basel), 2022, 11(3):469. |
[59] | LI X P, TAN Z L, JIAO J Z, et al.Supplementation with fat-coated rumen-protected glucose during the transition period enhances milk production and influences blood biochemical parameters of liver function and inflammation in dairy cows[J].Anim Feed Sci Technol, 2019, 252:92-102. |
[60] | HORST E A, KVIDERA S K, BAUMGARD L H.Invited review:The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas[J].J Dairy Sci, 2021, 104(8):8380-8410. |
[61] | SORDILLO L M, AITKEN S L.Impact of oxidative stress on the health and immune function of dairy cattle[J].Vet Immunol Immunopathol, 2009, 128(1-3):104-109. |
[62] | ZACHUT M, KRA G, LIVSHITZ L, et al.Proteome dataset of subcutaneous adipose tissue obtained from late pregnant dairy cows during summer heat stress and winter seasons[J].Data Brief, 2017, 12:535-539. |
[63] | SIPKA A S, CHANDLER T L, BEHLING-KELLY E L, et al.The effect of ex vivo lipopolysaccharide stimulation and nutrient availability on transition cow innate immune cell AKT/mTOR pathway responsiveness[J].J Dairy Sci, 2020, 103(2):1956-1968. |
[64] | YU M L, WANG H, XU Y L, et al.Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway[J].Cell Biol Int, 2015, 39(8):910-922. |
[65] | CHAO W, D'AMORE P A.IGF2:Epigenetic regulation and role in development and disease[J].Cytokine Growth Factor Rev, 2008, 19(2):111-120. |
[66] | WANG Y, HAN X F, TAN Z L, et al.Rumen-protected glucose stimulates the insulin-like growth factor system and mTOR/AKT pathway in the endometrium of early postpartum dairy cows[J].Animals, 2020, 10(2):357. |
[67] | BURKE C R, MEIER S, MCDOUGALL S, et al.Relationships between endometritis and metabolic state during the transition period in pasture-grazed dairy cows[J].J Dairy Sci, 2010, 93(11):5363-5373. |
[68] | MCCARTHY C S, DOOLEY B C, BRANSTAD E H, et al.Energetic metabolism, milk production, and inflammatory response of transition dairy cows fed rumen-protected glucose[J].J Dairy Sci, 2020, 103(8):7451-7461. |
[69] | GUO C, LI H, SUN D, et al.Effects of abomasal supplementation of quercetin on performance, inflammatory cytokines, and matrix metalloproteinase genes expression in goats fed a high-grain diet[J].Livest Sci, 2018, 209:20-24. |
[70] | ZHANG X L, WU J, HAN X F, et al.Effects of rumen-protected glucose on ileal microbiota and genes involved in ileal epithelial metabolism and immune homeostasis in transition dairy cows[J].Anim Feed Sci Technol, 2019, 254:114199. |
[71] | 严啊妮, 沈 奔, 王洪荣, 等.过瘤胃葡萄糖和缓释尿素对热应激绵羊生产性能及瘤胃发酵功能的影响[J].中国畜牧兽医, 2022, 49(6):2105-2115.YAN A N, SHEN B, WANG H R, et al.Effects of rumen-protected glucose and slow-release urea onperformance and rumen fermentation function of heat-stressed sheep[J].China Animal Husbandry & Veterinary Medicine, 2022, 49(6):2105-2115.(in Chinese) |
[72] | HABEL J, SUNDRUM A.Mismatch of glucose allocation between different life functions in the transition period of dairy cows[J].Animals, 2020, 10(6):1028. |
[73] | 张洪友, 夏 成, 李徐延, 等.过瘤胃葡萄糖对泌乳早期奶牛产奶量和乳汁成分的影响[J].现代畜牧兽医, 2010(10):49-52.ZHANG H Y, XIA C, LI X Y, et al.Effect of glucose-passed rumen on milk yield and milk ingredients of cows during early lactation[J].Modern Journal of Animal Husbandry and Veterinary Medicine, 2010(10):49-52.(in Chinese) |
[74] | 郭新怀, 吴广安, 张胜利, 等.过瘤胃葡萄糖对泌乳奶牛产奶量及乳成分的影响[J].家畜生态学报, 2009, 30(1):62-64, 67.GUO X H, WU G A, ZHANG S L, et al.Effects of ruminally protected glucose on milk yield and dairy components[J].Acta Ecologae Animalis Domastici, 2009, 30(1):62-64, 67.(in Chinese) |
[75] | AUFFRET M D, DEWHURST R J, DUTHIE C A, et al.The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle[J].Microbiome, 2017, 5(1):159. |
[76] | WANG Y P, NAN X M, ZHAO Y G, et al.Ruminal degradation of rumen-protected glucose influences the ruminal microbiota and metabolites in early-lactation dairy cows[J].Appl Environ Microbiol, 2021, 87(2):e01908-20. |
[77] | 王亚品, 张 帆, 华登科, 等.过瘤胃葡萄糖的瘤胃稳定性及其不同剂量对燕麦干草瘤胃降解特性的影响[J].动物营养学报, 2020, 32(7):3428-3438.WANG Y P, ZHANG F, HUA D K, et al.Rumen stability of rumen-protected glucose and its effects of different doses on rumen degradation characteristics of oat hay[J].Chinese Journal of Animal Nutrition, 2020, 32(7):3428-3438.(in Chinese) |
[78] | 龚 龑, 张 彬, 张 翼.过瘤胃技术在奶牛生产中的应用与研究进展[J].中国奶牛, 2015(17):15-20.GONG Y, ZHANG B, ZHANG Y.Research progress and application of rumen protected technology in dairy cattle[J].China Dairy Cattle, 2015(17):15-20.(in Chinese) |
[79] | 薛 倩, 高艳霞, 陈子宁, 等.不同壁材对过瘤胃葡萄糖微胶囊稳定性的影响[J].中国饲料, 2015(6):25-27, 31.XUE Q, GAO Y X, CHEN Z N, et al.Effects of different wall materials stability of rumen by-pass glucose microcapsule[J].China Feed, 2015(6):25-27, 31.(in Chinese) |
[1] | 尚恺圆, 江明锋, 官久强, 安添午, 赵洪文, 柏琴, 吴伟生, 李华德, 谢荣清, 沙泉, 罗晓林, 张翔飞. 围产期母体营养调控对犊牦牛生长发育、血清生化及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(4): 1638-1648. |
[2] | 郭妍婷, 周建民, 王晶, 齐广海. 产蛋鸡子宫部钙离子转运及调控的研究进展[J]. 畜牧兽医学报, 2024, 55(1): 39-50. |
[3] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[4] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
[5] | 熊程坤, 张道亮, 杨悦, 丁红研, 赵杰, 李玉, 王希春, 冯士彬, 赵畅, 汤继顺, 吴金节. 芦丁对围产期湖羊瘤胃发酵、瘤胃菌群结构及抗氧化性能的影响[J]. 畜牧兽医学报, 2023, 54(7): 2898-2909. |
[6] | 常心雨, 王继光, 王晶, 张海军, 齐广海, 邱凯, 武书庚. 商品蛋鸡精准饲养技术研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1815-1823. |
[7] | 杜海东, 娜仁花. 反刍动物妊娠期和泌乳期生理代谢和微生物变化及其对子代发育的影响研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4458-4467. |
[8] | 赵慧颖, 余诗强, 赵玉超, 蒋林树. 肝脏-脂肪组织代谢串扰在围产期奶牛脂肪肝发展中的作用机制[J]. 畜牧兽医学报, 2023, 54(10): 4105-4116. |
[9] | 崔志洁, 姜惺伟, 吴登科, 雷新建, 曹阳春, 邓露, 姚军虎, 蔡传江. 过瘤胃烟酸和胆碱对围产期奶牛泌乳性能和肝脂质代谢的影响[J]. 畜牧兽医学报, 2022, 53(3): 802-812. |
[10] | 马晓玲, 彭巍, 舒适. 基于LCMS技术对牦牛围产后期的血清动态代谢组学分析[J]. 畜牧兽医学报, 2022, 53(11): 3811-3826. |
[11] | 赵旭, 凌玉钊, 王建华, 魏凌云, 焦金真, 贺志雄. 幼龄反刍动物瘤胃微生物定植及其营养调控研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3296-3304. |
[12] | 张春桃, 马涛, 屠焰, 刁其玉. 生物节律对动物生理营养及物质消化利用调控的研究进展[J]. 畜牧兽医学报, 2021, 52(4): 872-880. |
[13] | 储蓄, 张军霞, 王晶. 动物氧化应激及其营养调控措施研究进展[J]. 畜牧兽医学报, 2021, 52(12): 3346-3356. |
[14] | 陶金忠,郭延生. 奶牛产后血浆1H-NMR代谢组学分析[J]. 畜牧兽医学报, 2016, 47(1): 198-206. |
[15] | 陈子宁,李妍,高艳霞,薛倩,李秋凤,李建国. 围产前期日粮能量水平对荷斯坦奶牛产后生产性能和血液指标的影响[J]. 畜牧兽医学报, 2015, 46(11): 2002-2009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||