1 |
安宁, 周占琴. 做大做强陕北白绒山羊产业[J]. 畜牧兽医杂志, 2014, 33 (4): 70-71, 74.
doi: 10.3969/j.issn.1004-6704.2014.04.025
|
|
AN N , ZHOU Z Q . Development and strengthen the Shanbei white cashmere goat industry[J]. Journal of Animal Science and Veterinary Medicine, 2014, 33 (4): 70-71, 74.
doi: 10.3969/j.issn.1004-6704.2014.04.025
|
2 |
尤文秀, 李万泰. 陕北白绒山羊[J]. 中国畜牧杂志, 2004, 40 (5): 62.
doi: 10.3969/j.issn.0258-7033.2004.05.026
|
|
YOU W X , LI W T . Shanbei white cashmere goat[J]. Chinese Journal of Animal Science, 2004, 40 (5): 62.
doi: 10.3969/j.issn.0258-7033.2004.05.026
|
3 |
XUE M Y , SUN H Z , WU X H , et al. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance[J]. Microbiome, 2020, 8 (1): 64.
doi: 10.1186/s40168-020-00819-8
|
4 |
FURMAN O , SHENHAV L , SASSON G , et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics[J]. Nat Commun, 2020, 11 (1): 1904.
doi: 10.1038/s41467-020-15652-8
|
5 |
LI L P , PENG K L , XUE M Y , et al. An age effect of rumen microbiome in dairy buffaloes revealed by metagenomics[J]. Microorganisms, 2022, 10 (8): 1491.
doi: 10.3390/microorganisms10081491
|
6 |
GUO X , SHA Y , LV W , et al. Sex differences in rumen fermentation and microbiota of Tibetan goat[J]. Microb Cell Fact, 2022, 7, 21 (1): 55.
|
7 |
PLAIZIER J C , LI S C , DANSCHER A M , et al. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge[J]. Microb Ecol, 2017, 74 (2): 485- 495.
doi: 10.1007/s00248-017-0940-z
|
8 |
韦肖, 张建童, 龙唐晖, 等. 日粮能量水平对湖羊瘤胃发酵特性和微生物组成的影响[J]. 畜牧兽医学报, 2022, 53 (9): 3042- 3051.
|
|
WEI X , ZHANG J T , LONG T H , et al. Effects of dietary energy level on rumen fermentation characteristics and microbial composition of Hu sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3042- 3051.
|
9 |
张海波, 王之盛. 精料补充料能量水平对肉牛瘤胃发酵特性及微生物菌群的影响[J]. 中国畜牧杂志, 2017, 53 (9): 97- 101.
|
|
ZHANG H B , WANG Z S . Rumen fermentation and rumen microbes in beef cattle receiving diets with different dietary energy level of concentrate supplement[J]. Chinese Journal of Animal Science, 2017, 53 (9): 97- 101.
|
10 |
李陇平, 张宸, 李托, 等. 陕北白绒山羊断奶公羔的消化能需求量研究[J]. 西北农林科技大学学报: 自然科学版, 2022, 50 (7): 26- 34.
|
|
LI L P , ZHANG C , LI T , et al. Dietary digestive energy requirement of weaned male lambs of Shaanbei white cashmere goats[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50 (7): 26- 34.
|
11 |
李陇平, 李托, 朱海鲸, 等. 饲粮不同消化能水平对25~35 kg陕北白绒山羊公羔生长性能、营养物质表观消化率和血清生化指标的影响[J]. 动物营养学报, 2021, 33 (11): 6277- 6289.
doi: 10.3969/j.issn.1006-267x.2021.11.028
|
|
LI L P , LI T , ZHU H J , et al. Effects of dietary different digestive energy levels on growth performance, nutrient apparent digestibility and serum biochemical indices of 25 to 35 kg male Shaanbei white cashmere goats[J]. Chinese Journal of Animal Nutrition, 2021, 33 (11): 6277- 6289.
doi: 10.3969/j.issn.1006-267x.2021.11.028
|
12 |
白齐昌, 郝小燕, 项斌伟, 等. 沙棘黄酮对绵羊体外产气量、瘤胃发酵参数和微生物菌群的影响[J]. 动物营养学报, 2020, 32 (3): 1405- 1414.
|
|
BAI Q C , HAO X Y , XIANG B W , et al. Effects of sea buckthorn flavone on gas production, rumen fermentation parameters and microflora population of sheep in vitro[J]. Chinese Journal of Animal Nutrition, 2020, 32 (3): 1405- 1414.
|
13 |
CALLAHAN B J , MCMURDIE P J , ROSEN M J , et al. Dada2:high-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13 (7): 581- 583.
doi: 10.1038/nmeth.3869
|
14 |
BOKULICH N A , KAEHLER B D , RAM R J , et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QⅡME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6 (1): 90.
doi: 10.1186/s40168-018-0470-z
|
15 |
MANDAL S , VAN TREUREN W , WHITE R A , et al. Analysis of composition of microbiomes: a novel method for studying microbial composition[J]. Microb Ecol Health Dis, 2015, 26, 27663.
|
16 |
VÁZQUEZ-BAEZA Y , PIRRUNG M , GONZALEZ A , et al. EMPeror: a tool for visualizing high-throughput microbial community data[J]. Gigascience, 2013, 2 (1): 16.
doi: 10.1186/2047-217X-2-16
|
17 |
金亚倩, 赵俊星, 刘文忠, 等. 酿酒葡萄皮渣对绵羊瘤胃代谢及发育的影响[J]. 畜牧兽医学报, 2017, 48 (9): 1683- 1693.
|
|
JIN Y Q , ZHAO J X , LIU W Z , et al. Effect of dietary wine grape pomace supplementation on rumen metabolism and development in lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (9): 1683- 1693.
|
18 |
王富伟, 何雅琴, 郑宇慧, 等. 饲粮能量水平对干奶期奶牛瘤胃发酵、消化代谢及血浆生化指标的影响[J]. 动物营养学报, 2021, 33 (10): 5690- 5700.
doi: 10.3969/j.issn.1006-267x.2021.10.028
|
|
WANG F W , HE Y Q , ZHENG Y H , et al. Effects of dietary energy levels on rumen fermentation, digestion and metabolism and plasma biochemical parameters of dairy cows during dry period[J]. Chinese Journal of Animal Nutrition, 2021, 33 (10): 5690- 5700.
doi: 10.3969/j.issn.1006-267x.2021.10.028
|
19 |
李宏, 宋淑珍, 高良霜, 等. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30 (4): 180- 190.
|
|
LI H , SONG S Z , GAO L X , et al. Effects of feeding level on the gastrointestinal development, rumen fermentation and[J]. Acta Prataculturae Sinica, 2021, 30 (4): 180- 190.
|
20 |
白大洋. 日粮能量水平对西门塔尔杂交公牛育肥性能、瘤胃发酵及养分代谢的影响[D]. 保定: 河北农业大学, 2019.
|
|
BAI D Y. Effects of dietary energy levels on fattening performance, rumen fermentation and nutrient metabolism of simmental hybrid bulls[D]. Baoding: Hebei Agricultural University, 2019.
|
21 |
RABELO E , REZENDE R L , BERTICS S J , et al. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows[J]. J Dairy Sci, 2003, 86 (3): 916- 925.
doi: 10.3168/jds.S0022-0302(03)73674-1
|
22 |
霍路曼, 曹玉凤, 高艳霞, 等. 饲粮能量水平对荷斯坦育成牛生长性能和瘤胃发酵的影响[J]. 畜牧兽医学报, 2019, 50 (2): 332- 342.
|
|
HUO L M , CAO Y F , GAO Y X , et al. The effect of dietary energy levels on growth performance and rumen fermentation in Chinese Holstein Heifers[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 332- 342.
|
23 |
FIRKINS J L , YU Z , MORRISON M . Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy[J]. J Dairy Sci, 2007, 90 (Suppl 1): E1- E16.
|
24 |
THAO N T , WANAPAT M , CHERDTHONG A , et al. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes[J]. Asian Austral J Anim Sci, 2014, 27 (1): 46- 54.
doi: 10.5713/ajas.2013.13301
|
25 |
DIJKSTRA J . Production and absorption of volatile fatty acids in the rumen[J]. Livest Prod Sci, 1994, 39 (1): 61- 69.
doi: 10.1016/0301-6226(94)90154-6
|
26 |
WANG H B , HE Y , LI H , et al. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels[J]. Appl Microbiol Biot, 2019, 103 (12): 4931- 4942.
doi: 10.1007/s00253-019-09839-3
|
27 |
王尧悦, 赵钊艳, 王兴涛, 等. 日粮营养水平对150~180日龄滩羊瘤胃相关微生物菌群数量、pH和VFA含量的影响[J]. 畜牧兽医学报, 2016, 47 (10): 2060- 2070.
doi: 10.11843/j.issn.0366-6964.2016.10.015
|
|
WANG Y Y , ZHAO Z Y , WANG X T , et al. Effect of dietary nutrient levels on the number of related microbes, pH and VFA levels in Rumen of tan sheep aged from 150 to 180 days[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (10): 2060- 2070.
doi: 10.11843/j.issn.0366-6964.2016.10.015
|
28 |
李洋, 高民, 胡红莲, 等. 反刍动物瘤胃挥发性脂肪酸的吸收机制[J]. 动物营养学报, 2018, 30 (6): 2070- 2078.
doi: 10.3969/j.issn.1006-267x.2018.06.008
|
|
LI Y , GAO M , HU H L , et al. Ruminal absorption mechanism of volatile fatty acids in ruminants[J]. Chinese Journal of Animal Nutrition, 2018, 30 (6): 2070- 2078.
doi: 10.3969/j.issn.1006-267x.2018.06.008
|
29 |
唐鹏. 日粮能蛋水平对陕北白绒山羊生产性能、瘤胃微生物区系和代谢组学的影响[D]. 杨凌: 西北农林科技大学, 2018.
|
|
TANG P. Effects of dietary energy and protein levels on growth performance, rumen microbial, flora and metabolomics of Shanbei white cashmere goats[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
|
30 |
QIU Q H , GAO C Y , AZIZ UR RAHMAN M , et al. Digestive ability, physiological characteristics, and rumen bacterial community of Holstein finishing steers in response to three nutrient density diets as fattening phases advanced[J]. Microorganisms, 2020, 8 (3): 335.
doi: 10.3390/microorganisms8030335
|
31 |
张振宇, 梁春年, 姚喜喜, 等. 饲养方式和饲粮能量水平对牦牛生长性能、瘤胃发酵参数和瘤胃菌群的影响[J]. 动物营养学报, 2021, 33 (6): 3343- 3355.
|
|
ZHANG Z Y , LIANG C N , YAO X X , et al. Effects of feeding model and dietary energy level on growth performance, rumen fermentation parameters and rumen bacterial community of yaks[J]. Chinese Journal of Animal Nutrition, 2021, 33 (6): 3343- 3355.
|
32 |
LI L P , QU L , LI T . Supplemental dietary Selenohomolanthionine affects growth and rumen bacterial population of Shaanbei white cashmere wether goats[J]. Front Microbiol, 2022, 13, 942848.
doi: 10.3389/fmicb.2022.942848
|
33 |
WU G D , CHEN J , HOFFMANN C , et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334 (6052): 105- 108.
doi: 10.1126/science.1208344
|
34 |
HOOK S E , STEELE M A , NORTHWOOD K S , et al. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows[J]. Fems Microbiol Ecol, 2011, 78 (2): 275- 284.
doi: 10.1111/j.1574-6941.2011.01154.x
|
35 |
林波, 梁辛, 李丽莉, 等. 饲粮精粗比对泌乳水牛瘤胃细菌和甲烷菌区系的影响[J]. 动物营养学报, 2016, 28 (10): 3101- 3109.
doi: 10.3969/j.issn.1006-267x.2016.10.012
|
|
LIN B , LIANG X , LI L L , et al. Dietary forage to concentrate ratio affects ruminal bacterial and methanogen community composition of water buffaloes[J]. Chinese Journal of Animal Nutrition, 2016, 28 (10): 3101- 3109.
doi: 10.3969/j.issn.1006-267x.2016.10.012
|
36 |
杨硕, 卢洋洋, 韦玥瑞, 等. 补饲精料对大青山绒山羊瘤胃细菌及产甲烷菌多样性的影响[J]. 畜牧与兽医, 2020, 52 (8): 50- 55.
|
|
YANG S , LU Y Y , WEI Y R , et al. Effect of supplementary feeding on the diversity of rumen bacteria and methanogens in grazing Daqingshan cashmere goats[J]. Animal Husbandry & Veterinary Medicine, 2020, 52 (8): 50- 55.
|
37 |
GODON J J , MORINIōRE J , MOLETTA M , et al. Rarity associated with specific ecological niches in the bacterial world: the 'Synergistes' example[J]. Environ Microbiol, 2005, 7 (2): 213- 224.
doi: 10.1111/j.1462-2920.2004.00693.x
|
38 |
PURUSHE J , FOUTS D E , MORRISON M , et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche[J]. Microb Ecol, 2010, 60 (4): 721- 729.
doi: 10.1007/s00248-010-9692-8
|
39 |
HUO W J , ZHU W Y , MAO S Y . Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats[J]. World J Microb Biot, 2014, 30 (2): 669- 680.
|
40 |
KOIKE S , YOSHITANI S , KOBAYASHI Y , et al. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria[J]. FEMS Microbiol Lett, 2003, 229 (1): 23- 30.
|
41 |
DOERNER K C , WHITE B A . Assessment of the endo-1, 4-beta-glucanase components of Ruminococcus flavefaciens FD-1[J]. Appl Environ Microb, 1990, 56 (6): 1844- 1850.
|
42 |
LIU C , WU H , LIU S J , et al. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type[J]. Front Microbiol, 2019, 10, 1116.
|
43 |
AN D D , DONG X Z , DONG Z Y . Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses[J]. Anaerobe, 2005, 11 (4): 207- 215.
|
44 |
SHIN E C , CHO K M , LIM W J , et al. Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences[J]. J Appl Microbiol, 2004, 97 (2): 378- 383.
|