[1] |
STEWART R D, AUFFRET M D, WARR A, et al.Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J].Nat Biotechnol, 2019, 37(8):953-961.
|
[2] |
MIZRAHI I, WALLACE R J, MORAÏS S.The rumen microbiome:balancing food security and environmental impacts[J].Nat Rev Microbiol, 2021, 19(9):553-566.
|
[3] |
NEWBOLD C J, RAMOS-MORALES E.Review:ruminal microbiome and microbial metabolome:effects of diet and ruminant host[J].Animal, 2020, 14(S1):s78-s86.
|
[4] |
SESHADRI R, LEAHY S C, ATTWOOD G T, et al.Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection[J].Nat Biotechnol, 2018, 36(4):359-367.
|
[5] |
ZHANG K, LI B B, GUO M M, et al.Maturation of the goat rumen microbiota involves three stages of microbial colonization[J].Animals (Basel), 2019, 9(12):1028.
|
[6] |
MEALE S J, LI S C, AZEVEDO P, et al.Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves[J].Front Microbiol, 2016, 7:582.
|
[7] |
WANG L Z, XU Q, KONG F L, et al.Exploring the goat rumen microbiome from seven days to two years[J].PLoS One, 2016, 11(5):e0154354.
|
[8] |
JAMI E, ISRAEL A, KOTSER A, et al.Exploring the bovine rumen bacterial community from birth to adulthood[J].ISME J, 2013, 7(6):1069-1079.
|
[9] |
MORAÏS S, MIZRAHI I.Islands in the stream:from individual to communal fiber degradation in the rumen ecosystem[J].FEMS Microbiol Rev, 2019, 43(4):362-379.
|
[10] |
ZHANG Z B, WEI W J, YANG S H, et al.Regulation of dietary protein solubility improves ruminal nitrogen metabolism in vitro:role of bacteria-protozoa interactions[J].Nutrients, 2022, 14(14):2972.
|
[11] |
KIM M, MORRISON M, YU Z T.Status of the phylogenetic diversity census of ruminal microbiomes[J].FEMS Microbiol Ecol, 2011, 76(1):49-63.
|
[12] |
WALLACE R J, SASSON G, GARNSWORTHY P C, et al.A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions[J].Sci Adv, 2019, 5(7):eaav8391.
|
[13] |
ARNTZEN M Ø, VÁRNAI A, MACKIE R I, et al.Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity[J].Environ Microbiol, 2017, 19(7):2701-2714.
|
[14] |
高 星, 李永丽, 燕亚平, 等.瘤胃纤维素降解细菌的研究进展[J/OL].微生物学杂志:1-8[2023-06-25].http://kns.cnki.net/kcms/detail/21.1186.Q.20230601.1225.002.html.GAO X, LI Y L, YAN Y P, et al.Advances in rumen cellulose-degradable bacteria[J/OL].Journal of Microbiology, 2023:1-8.[2023-06-25].http://kns.cnki.net/kcms/detail/21.1186.Q.20230601.1225.002.html.(in Chinese)
|
[15] |
刘玉承, 侯先志, 刘占英, 等.2株瘤胃纤维降解细菌的分离鉴定[J].微生物学杂志, 2007, 27(6):1-4.LIU Y C, HOU X Z, LIU Z Y, et al.Isolation and identification of two cellulose-degrading strains from rumen[J].Journal of Microbiology, 2007, 27(6):1-4.(in Chinese)
|
[16] |
ZEHAVI T, PROBST M, MIZRAHI I.Insights into culturomics of the rumen microbiome[J].Front Microbiol, 2018, 9:1999.
|
[17] |
LIU S J, YU Z T, ZHONG H Y, et al.Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle[J].Microbiome, 2023, 11(1):76.
|
[18] |
DE OLIVEIRA I M F, GODOY-SANTOS F, OYAMA L B, et al.Whole-genome sequencing and comparative genomic analysis of antimicrobial producing Streptococcus lutetiensis from the rumen[J].Microorganisms, 2022, 10(3):551.
|
[19] |
LAGIER J C, ARMOUGOM F, MILLION M, et al.Microbial culturomics:paradigm shift in the human gut microbiome study[J].Clin Microbiol Infect, 2012, 18(12):1185-1193.
|
[20] |
LAGIER J C, HUGON P, KHELAIFIA S, et al.The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota[J].Clin Microbiol Rev, 2015, 28(1):237-264.
|
[21] |
LAGIER J C, KHELAIFIA S, ALOU M T, et al.Culture of previously uncultured members of the human gut microbiota by culturomics[J].Nat Microbiol, 2016, 1(12):16203.
|
[22] |
KAMINSKI T S, SCHELER O, GARSTECKI P.Droplet microfluidics for microbiology:techniques, applications and challenges[J].Lab Chip, 2016, 16(12):2168-2187.
|
[23] |
TAN H Y, TOH Y C.What can microfluidics do for human microbiome research?[J].Biomicrofluidics, 2020, 14(5):051303.
|
[24] |
COLLINS D J, NEILD A, DEMELLO A, et al.The Poisson distribution and beyond:methods for microfluidic droplet production and single cell encapsulation[J].Lab Chip, 2015, 15(17):3439-3459.
|
[25] |
JIANG C Y, DONG L B, ZHAO J K, et al.High-throughput single-cell cultivation on microfluidic streak plates[J].Appl Environ Microbiol, 2016, 82(7):2210-2218.
|
[26] |
ZHOU N, SUN Y T, CHEN D W, et al.Harnessing microfluidic streak plate technique to investigate the gut microbiome of Reticulitermes chinensis[J].Microbiologyopen, 2019, 8(3):e00654.
|
[27] |
CHEN D W, LIU S J, DU W B.Chemotactic screening of imidazolinone-degrading bacteria by microfluidic SlipChip[J].J Hazard Mater, 2019, 366:512-519.
|
[28] |
VILLA M M, BLOOM R J, SILVERMAN J D, et al.Interindividual variation in dietary carbohydrate metabolism by gut bacteria revealed with droplet microfluidic culture[J].mSystems, 2020, 5(3):e00864-19.
|
[29] |
WATTERSON W J, TANYERI M, WATSON A R, et al.Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes[J].eLife, 2020, 9:e56998.
|
[30] |
TEREKHOV S S, SMIRNOV I V, STEPANOVA A V, et al.Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity[J].Proc Natl Acad Sci U S A, 2017, 114(10):2550-2555.
|
[31] |
TEREKHOV S S, SMIRNOV I V, MALAKHOVA M V, et al.Ultrahigh-throughput functional profiling of microbiota communities[J].Proc Natl Acad Sci U S A, 2018, 115(38):9551-9556.
|
[32] |
BARTELME R P, CUSTER J M, DUPONT C L, et al.Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by high-throughput dilution-to-extinction cultivation[J].mSphere, 2020, 5(1):e00024-20.
|
[33] |
KAEBERLEIN T, LEWIS K, EPSTEIN S S.Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J].Science, 2002, 296(5570):1127-1129.
|
[34] |
NICHOLS D, CAHOON N, TRAKHTENBERG E M, et al.Use of ichip for high-throughput in situ cultivation of "uncultivable" microbial species[J].Appl Environ Microbiol, 2010, 76(8):2445-2450.
|
[35] |
LLORÉNS-RICO V, SIMCOCK J A, HUYS G R B, et al.Single-cell approaches in human microbiome research[J].Cell, 2022, 185(15):2725-2738.
|
[36] |
LURO S, POTVIN-TROTTIER L, OKUMUS B, et al.Isolating live cells after high-throughput, long-term, time-lapse microscopy[J].Nat Methods, 2020, 17(1):93-100.
|
[37] |
HOEHLER T M, JØRGENSEN B B.Microbial life under extreme energy limitation[J].Nat Rev Microbiol, 2013, 11(2):83-94.
|
[38] |
EPSTEIN S S.The phenomenon of microbial uncultivability[J].Curr Opin Microbiol, 2013, 16(5):636-642.
|
[39] |
LEWIS W H, TAHON G, GEESINK P, et al.Innovations to culturing the uncultured microbial majority[J].Nat Rev Microbiol, 2021, 19(4):225-240.
|
[40] |
GUZMAN J J L, SOUSA D Z, ANGENENT L T.Development of a bioelectrochemical system as a tool to enrich H2-producing syntrophic bacteria[J].Front Microbiol, 2019, 10:110.
|
[41] |
ZHENG W S, ZHAO S J, YIN Y H, et al.High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome[J].Science, 2022, 376(6597):eabm1483.
|
[42] |
CROSS K L, CAMPBELL J H, BALACHANDRAN M, et al.Targeted isolation and cultivation of uncultivated bacteria by reverse genomics[J].Nat Biotechnol, 2019, 37(11):1314-1321.
|
[43] |
GE Z F, GIRGUIS P R, BUIE C R.Nanoporous microscale microbial incubators[J].Lab Chip, 2016, 16(3):480-488.
|
[44] |
DUBOURG G, ABAT C, RAOULT D.Why new antibiotics are not obviously useful now[J].Int J Antimicrob Agents, 2017, 49(5):549-553.
|