畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2701-2715.doi: 10.11843/j.issn.0366-6964.2024.06.041
收稿日期:
2023-07-18
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
郝海红
E-mail:zzy15179469958@163.com;haohaihong@mail.hzau.edu.cn
作者简介:
邹紫莹(1999-),女,江西抚州人,硕士生,主要从事兽医药理学和抗菌耐药性研究,E-mail: zzy15179469958@163.com
基金资助:
Ziying ZOU(), Anxiong HUANG, Zihan RUAN, Haihong HAO*(
)
Received:
2023-07-18
Online:
2024-06-23
Published:
2024-06-28
Contact:
Haihong HAO
E-mail:zzy15179469958@163.com;haohaihong@mail.hzau.edu.cn
摘要:
鸡滑液囊支原体(Mycoplasma synoviae,MS)是现在规模化禽养殖业中危害最大的支原体之一,同时也出现了严重的耐药性。为了解鸡滑液囊支原体对各种药物的耐药现状。本课题参考CLSI和EUCAST中制定流行病学/野生型临界值(epidemiological/wildtype cut-off values,ECOFFs/COWT)的方法,通过查找国内外相关文献报道,收集汇总近5年不同地区、不同来源的MS对各种药物的最小抑菌浓度(minimum inhibitory concentration,MIC)数据,应用肉眼观察法、ECOFFinder软件分析法和正态化耐药解释法(NRI)综合分析从而得到ECOFFs,随后计算相应的耐药率。结果显示,MS对泰乐菌素、替米考星、泰万菌素、多西环素、土霉素、金霉素、泰妙菌素、林可霉素、氟苯尼考和大观霉素的ECOFF值分别为1、0.5、0.5、2、4、2、2、2、8和4 μg·mL-1。在CLSI和EUCAST缺乏MS对各种抗菌药的敏感性折点下,本课题为临床合理用药,耐药性工作的开展,减少MS耐药性的产生以及治疗与防控提供了理论基础与科学依据。
中图分类号:
邹紫莹, 黄安雄, 阮紫涵, 郝海红. 鸡滑液囊支原体对常用抗菌药流行病学临界值的建立[J]. 畜牧兽医学报, 2024, 55(6): 2701-2715.
Ziying ZOU, Anxiong HUANG, Zihan RUAN, Haihong HAO. Establishment on Commonly Used Antimicrobials Epidemiological Cut-off Values of Mycoplasma synoviae[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2701-2715.
表 1
MS对12种药物的MIC数据信息"
药物种类 Drug classification | 药物名称 Drugs | 菌株总数 Number | 来源地区 Data source | 相关文献 Related literature |
大环内酯类 | 泰乐菌素Tylosin | 453 | 欧洲、亚洲 | [ |
Macrolides | 替米考星Tilmicosin | 448 | 欧洲、亚洲、非洲 | [ |
泰万菌素Tylvalosin | 238 | 欧洲 | [ | |
四环素类 | 多西环素Doxycycline | 198 | 欧洲、亚洲 | [ |
Tetracyclines | 土霉素Oxytetracycline | 301 | 欧洲、亚洲、大洋洲、非洲 | [ |
金霉素Chlortetracycline | 133 | 欧洲、亚洲、大洋洲、非洲 | [ | |
氟喹诺酮类 | 恩诺沙星Enrofloxacin | 217 | 欧洲、亚洲 | [ |
Fluoroquinolones | ||||
截短侧耳素类 | 泰妙菌素Tiamulin | 245 | 欧洲、亚洲 | [ |
Pleuromutilins | ||||
林可酰胺类 | 林可霉素Lincomycin | 305 | 欧洲、亚洲、非洲、大洋洲 | [ |
Lincomamides | ||||
氯霉素类 | 氟苯尼考Florfenicol | 321 | 欧洲、亚洲、非洲、大洋洲 | [ |
Chloramphenicols | ||||
氨基糖苷类 | 大观霉素Spectinomycin | 139 | 欧洲、亚洲、非洲、大洋洲 | [ |
Aminoglycosides | 新霉素Neomycin | 118 | 欧洲、亚洲、非洲、大洋洲 | [ |
表 2
MS对12种药物的MIC分布图"
MIC/(μg·mL-1) | 抗菌药物Antimicrobial agents | |||||||||||
TYL | TIL | TVL | DOX | OTC | CTC | ENR | TML | LCM | FFC | SPT | NEM | |
0.004 | 3a | 3a | ||||||||||
0.008 | 9 | |||||||||||
0.016 | 14 | 7 | 26 | |||||||||
0.031 | 43 | 7 | 14 | |||||||||
0.063 | 50 | 10 | 6 | 4a | 1 | 14a | ||||||
0.125 | 28 | 14 | 2 | 2 | 2 | 15 | ||||||
0.25 | 201a | 145a | 200a | 20 | 45a | 22a | 57 | 40a | 24a | 3a | ||
0.5 | 45 | 55 | 20 | 89 | 57 | 40 | 78 | 69 | 7 | 10 | ||
1 | 19 | 56 | 1 | 59 | 108 | 31 | 4 | 20 | 120 | 88 | 39 | |
2 | 32 | 27 | 13 | 64 | 17 | 11 | 8 | 21 | 97 | 67 | ||
4 | 4 | 19 | 8 | 8 | 19 | 10 | 17 | 0 | 12 | 62 | 17 | 2 |
8 | 3 | 19 | 1 | 3 | 5 | 4 | 20 | 0 | 0 | 43 | 3 | 9 |
16 | 3 | 13 | 9b | 36 | 0 | 0 | 23 | |||||
32 | 4 | 12 | 129b | 1 | 0 | 52 | ||||||
64 | 2 | 15b | 2b | 17 | ||||||||
128 | 2b | 48b | 41 | 15b | ||||||||
256 | 1b | |||||||||||
总计Total | 453 | 448 | 238 | 198 | 348 | 133 | 217 | 245 | 305 | 321 | 139 | 118 |
表 3
12种药物对MS的MIC50、MIC90、ECOFF值和耐药率"
药物 Drugs | MIC50/(μg·mL-1) | MIC90/(μg·mL-1) | ECOFF Visual /(μg·mL-1) | ECOFF ECOFFinder/(μg·mL-1) | ECOFF NRI/(μg·mL-1) | ECOFF Final/(μg·mL-1) | 耐药率/% DR |
泰乐菌素TYL | 0.25 | 2 | 1 | 1 | 0.25 | 1 | 11.0 |
替米考星TIL | 0.5 | 128 | 0.5 | 0.5 | 4 | 0.5 | 46.9 |
泰万菌素TVL | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 4.2 |
多西环素DOX | 0.5 | 2 | 2 | 2 | 2 | 2 | 5.6 |
土霉素OTC | 1 | 2 | 4 | 4 | 8 | 4 | 1.4 |
金霉素CTC | 1 | 4 | 2 | 2 | 2 | 2 | 17.3 |
恩诺沙星ENR | 32 | 32 | / | / | / | / | / |
泰妙菌素TML | 0.25 | 1 | 2 | 2 | 0.125 | 2 | 0.4 |
林可霉素LCM | 1 | 128 | 2 | 2 | 4 | 2 | 18.0 |
氟苯尼考FFC | 2 | 8 | 8 | 8 | 16 | 8 | 0 |
大观霉素SPT | 2 | 4 | 4 | 4 | 8 | 4 | 2.2 |
新霉素NEM | 32 | 128 | 128 | 128 | 128 | / | / |
1 | 周明虎, 严秀, 袁生, 等. 鸡滑液囊支原体流行现状及防控研究进展[J]. 中国家禽, 2023, 45 (2): 95- 101. |
ZHOU M H , YAN X , YUAN S , et al. Research progress on epidemic situation, prevention and control of Mycoplasma synoviae in chickens[J]. China Poultry, 2023, 45 (2): 95- 101. | |
2 | BEYLEFELD A , WAMBULAWAYE P , BWALA D G , et al. Evidence for multidrug resistance in nonpathogenic mycoplasma species isolated from south African poultry[J]. Appl Environ Microbiol, 2018, 84 (21): e01660- 18. |
3 |
杨美, 程振涛, 周怡, 等. 鸡毒支原体和鸡滑液囊支原体双重PCR检测方法的建立[J]. 动物医学进展, 2020, 41 (6): 27- 31.
doi: 10.3969/j.issn.1007-5038.2020.06.005 |
YANG M , CHENG Z T , ZHOU Y , et al. Establishment of a duplex PCR for detecting Mycoplasma gallisepticum and Mycoplasma synoviam[J]. Progress in Veterinary Medicine, 2020, 41 (6): 27- 31.
doi: 10.3969/j.issn.1007-5038.2020.06.005 |
|
4 |
朱小甫, 吴旭锦, 李怡婷, 等. 鸡毒支原体与滑液囊支原体双重PCR检测方法的建立与应用[J]. 动物医学进展, 2021, 42 (6): 31- 35.
doi: 10.3969/j.issn.1007-5038.2021.06.006 |
ZHU X F , WU X J , LI Y T , et al. Establishment and application of duplex PCR method for detection of Mycoplasma gallisepticum and Mycoplasma synovialum[J]. Progress in Veterinary Medicine, 2021, 42 (6): 31- 35.
doi: 10.3969/j.issn.1007-5038.2021.06.006 |
|
5 | 张济明. 蛋鸡滑液囊支原体病的流行病学、临床症状、剖检变化及防治措施[J]. 现代畜牧科技, 2019, (1): 96- 97. |
ZHANG J M . Epidemiology, clinical symptoms, autopsy changes, and measures of prevention and treatment of Mycoplasma synoviae in laying hens[J]. Modern Animal Husbandry Science & Technology, 2019, (1): 96- 97. | |
6 |
孙世宇. 规模鸡场支原体MG、MS的危害与防治[J]. 畜牧兽医科技信息, 2019, (6): 147.
doi: 10.3969/J.ISSN.1671-6027.2019.06.136 |
SUN S Y . Harm and prevention of mycoplasma MG and MS in large-scale chicken farms[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2019, (6): 147.
doi: 10.3969/J.ISSN.1671-6027.2019.06.136 |
|
7 |
BOTTINELLI M , GASTALDELLI M , PICCHI M , et al. The monitoring of Mycoplasma gallisepticum minimum inhibitory concentrations during the last decade (2010-2020) seems to reveal a comeback of susceptibility to macrolides, Tiamulin, and Lincomycin[J]. Antibiotics (Basel), 2022, 11 (8): 1021.
doi: 10.3390/antibiotics11081021 |
8 |
MOUTON J W . Breakpoints: current practice and future perspectives[J]. Int J Antimicrob Agents, 2002, 19 (4): 323- 331.
doi: 10.1016/S0924-8579(02)00028-6 |
9 |
TOUTAIN P L , BOUSQUET-MÉLOU A , DAMBORG P , et al. En route towards european clinical breakpoints for veterinary antimicrobial susceptibility testing: a position paper explaining the VetCAST approach[J]. Front Microbiol, 2017, 8, 2344.
doi: 10.3389/fmicb.2017.02344 |
10 |
TURNIDGE J , KAHLMETER G , KRONVALL G . Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values[J]. Clin Microbiol Infect, 2006, 12 (5): 418- 425.
doi: 10.1111/j.1469-0691.2006.01377.x |
11 |
陈超群, 陈佳莉, 周萱仪, 等. β-内酰胺类药物对副猪嗜血杆菌流行病学临界值的建立及耐药性的测定[J]. 畜牧兽医学报, 2021, 52 (11): 3234- 3245.
doi: 10.11843/j.issn.0366-6964.2021.011.025 |
CHEN C Q , CHEN J L , ZHOU X Y , et al. Establishment of epidemiological cut-off values and determination of drug resistance of Haemophilus parasuis with β-lactam drugs[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (11): 3234- 3245.
doi: 10.11843/j.issn.0366-6964.2021.011.025 |
|
12 |
SMITH P , ENDRIS R , KRONVALL G , et al. Epidemiological cut-off values for Flavobacterium psychrophilum MIC data generated by a standard test protocol[J]. J Fish Dis, 2016, 39 (2): 143- 154.
doi: 10.1111/jfd.12336 |
13 |
KRONVALL G , KARLSSON I , WALDER M , et al. Epidemiological MIC cut-off values for tigecycline calculated from Etest MIC values using normalized resistance interpretation[J]. J Antimicrob Chemother, 2006, 57 (3): 498- 505.
doi: 10.1093/jac/dki489 |
14 |
CANTÓN E , PEMÁN J , HERVÁS D , et al. Comparison of three statistical methods for establishing tentative wild-type population and epidemiological cutoff values for echinocandins, amphotericin B, flucytosine, and six Candida species as determined by the colorimetric Sensititre YeastOne method[J]. J Clin Microbiol, 2012, 50 (12): 3921- 3926.
doi: 10.1128/JCM.01730-12 |
15 |
TOUTAIN P L , SIDHU P K , LEES P , et al. VetCAST method for determination of the pharmacokinetic-pharmacodynamic cut-off values of a long-acting formulation of florfenicol to support clinical breakpoints for florfenicol antimicrobial susceptibility testing in cattle[J]. Front Microbiol, 2019, 10, 1310.
doi: 10.3389/fmicb.2019.01310 |
16 | WAITES K B , BADE D J , BEBEAR C M , et al. CLSI M43-A-Methods for antimicrobial susceptibility testing of human Mycoplasmas; Approved Guideline[M]. Pennsylvania: Clinical and Laboratory Standard Institute, 2011. |
17 |
HANNAN P C T . Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species[J]. Vet Res, 2000, 31 (4): 373- 395.
doi: 10.1051/vetres:2000100 |
18 | 郭大城, 马彦民, 许玉玲, 等. 支原体菌落形成单位与颜色改变单位定量关系研究[J]. 中国卫生检验杂志, 2020, 30 (4): 405- 407. |
GUO D C , MA Y M , XU Y L , et al. Study on quantitative relationship between colony formation unit and color changing unit for mycoplasma[J]. Chinese Journal of Health Laboratory Technology, 2020, 30 (4): 405- 407. | |
19 |
OH S , GO G W , CHOI N J , et al. Possible involvement of Mycoplasma hominis in inhibiting the formation of biofilms by uropathogenic Escherichia coli (UPEC)[J]. Biosci Biotechnol Biochem, 2013, 77 (10): 2025- 2029.
doi: 10.1271/bbb.130320 |
20 |
HILLITT K L , JENKINS R E , SPILLER O B , et al. Antimicrobial activity of Manuka honey against antibiotic-resistant strains of the cell wall-free bacteria Ureaplasma parvum and Ureaplasma urealyticum[J]. Lett Appl Microbiol, 2017, 64 (3): 198- 202.
doi: 10.1111/lam.12707 |
21 | "European committee on antimicrobial susceptibility testing[EB/OL]. MIC distributions and epidemiological cut-off value (ECOFF) setting, EUCAST SOP 10.2.2021. http://www.eucast.org. |
22 |
LOCKHART S R , GHANNOUM M A , ALEXANDER B D . Establishment and use of epidemiological cutoff values for molds and yeasts by use of the clinical and laboratory standards institute M57 standard[J]. J Clin Microbiol, 2017, 55 (5): 1262- 1268.
doi: 10.1128/JCM.02416-16 |
23 |
TURNIDGE J , PATERSON D L . Setting and revising antibacterial susceptibility breakpoints[J]. Clin Microbiol Rev, 2007, 20 (3): 391- 408.
doi: 10.1128/CMR.00047-06 |
24 |
KRONVALL G . Normalized resistance interpretation as a tool for establishing epidemiological MIC susceptibility breakpoints[J]. J Clin Microbiol, 2010, 48 (12): 4445- 4452.
doi: 10.1128/JCM.01101-10 |
25 |
周萱仪, 陆友龙, 陈超群, 等. 氨基糖苷类药物对副猪嗜血杆菌的流行折点[J]. 中国抗生素杂志, 2022, 47 (12): 1312- 1319.
doi: 10.3969/j.issn.1001-8689.2022.12.014 |
ZHOU X Y , LU Y L , CHEN C Q , et al. Establishment on aminoglycoside epidemiological cut-off values of Haemophilus parasuis[J]. Chinese Journal of Antibiotics, 2022, 47 (12): 1312- 1319.
doi: 10.3969/j.issn.1001-8689.2022.12.014 |
|
26 |
MORROW C J , KREIZINGER Z , ACHARI R R , et al. Antimicrobial susceptibility of pathogenic mycoplasmas in chickens in Asia[J]. Vet Microbiol, 2020, 250, 108840.
doi: 10.1016/j.vetmic.2020.108840 |
27 |
EMAM M , HASHEM Y M , EL-HARIRI M , et al. Detection and antibiotic resistance of Mycoplasma gallisepticum and Mycoplasma synoviae among chicken flocks in Egypt[J]. Vet World, 2020, 13 (7): 1410- 1416.
doi: 10.14202/vetworld.2020.1410-1416 |
28 | 李俊, 牛志强, 侯博, 等. 福建地区鸡滑液囊支原体的分离、药物敏感性及耐药株全基因组序列分析[J]. 江苏农业科学, 2021, 49 (12): 117- 124. |
LI J , NIU Z Q , HOU B , et al. Isolation and drug sensitivity of chicken Mycoplasma synoviae, and whole genome sequence analysis of its drug-resistant strains in Fujian Province[J]. Jiangsu Agricultural Sciences, 2021, 49 (12): 117- 124. | |
29 |
ZHANG X R , GUO M J , XIE D , et al. Antibiotic resistance of Mycoplasma synoviae strains isolated in China from 2016 to 2019[J]. BMC Vet Res, 2022, 18 (1): 1.
doi: 10.1186/s12917-021-03104-4 |
30 | 张惠茹, 肖霞, 杨铜, 等. 鸡滑液囊支原体对常用抗菌药的耐药性研究[J]. 中国家禽, 2021, 43 (4): 36- 42. |
ZHANG H R , XIAO X , YANG T , et al. Antibacterial resistance to common antibiotics of Mycoplasma synoviae isolated from chickens[J]. China Poultry, 2021, 43 (4): 36- 42. | |
31 |
CATANIA S , BOTTINELLI M , FINCATO A , et al. Evaluation of minimum inhibitory concentrations for 154 Mycoplasma synoviae isolates from Italy collected during 2012-2017[J]. PLoS One, 2019, 14 (11): e0224903.
doi: 10.1371/journal.pone.0224903 |
32 |
BEKÖ K , KREIZINGER Z , KOVÁCSÁ B , et al. Mutations potentially associated with decreased susceptibility to fluoroquinolones, macrolides and lincomycin in Mycoplasma synoviae[J]. Vet Microbiol, 2020, 248, 108818.
doi: 10.1016/j.vetmic.2020.108818 |
33 |
BEKÖ K , KREIZINGER Z , YVON C , et al. Development of molecular assays for the rapid and cost-effective determination of fluoroquinolone, macrolide and lincosamide susceptibility of Mycoplasma synoviae isolates[J]. PLoS One, 2020, 15 (10): e0241647.
doi: 10.1371/journal.pone.0241647 |
34 |
KREIZINGER Z , GRÓZNER D , SULYOK K M , et al. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe[J]. BMC Vet Res, 2017, 13 (1): 342.
doi: 10.1186/s12917-017-1266-2 |
35 | 雷志鑫. 副猪嗜血杆菌对泰地罗新的耐药判定标准和耐药机制研究[D]. 武汉: 华中农业大学, 2018. |
LEI Z X. Resistant breakpoint and mechanism study for Haemophilus parasuis against tildipirosin[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) | |
36 |
RESMAN F , RISTOVSKI M , AHL J , et al. Invasive disease caused by Haemophilus influenzae in Sweden 1997-2009; evidence of increasing incidence and clinical burden of non-type b strains[J]. Clin Microbiol Infect, 2011, 17 (11): 1638- 1645.
doi: 10.1111/j.1469-0691.2010.03417.x |
37 | BARON S , GRANIER S A , LARVOR E , et al. Aeromonas diversity and antimicrobial susceptibility in freshwater-an attempt to set generic epidemiological cut-off values[J]. Front Microbiol, 2017, 8, 503. |
38 | 傅嘉莉. 三种动物专用药物在鸡呼吸道源大肠杆菌的流行病学折点的建立[D]. 广州: 华南农业大学, 2018. |
FU J L. Establishment of epidemiological cut-off values for three animal specific drugs against Escherichia coli from chicken's respiratory tract[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese) | |
39 | 吴思莉, 傅嘉莉, 朱家杭, 等. 3种动物专用抗菌药在鸡肠道沙门菌的流行病学临界值的建立[J]. 中国畜牧兽医, 2020, 47 (9): 2917- 2925. |
WU S L , FU J L , ZHU J H , et al. Epidemiological cut-off values (ECOFFs) of salmonella from chicken intestinal tract for three animal-specific antibiotics[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (9): 2917- 2925. | |
40 | 谢迪. 2016—2019年我国部分地区鸡滑液囊支原体的分子流行病学调查[D]. 扬州: 扬州大学, 2020. |
XIE D. Molecular epidemiological investigation of Mycoplasma synoviae strains isolated from some areas of China during 2016 to 2019[D]. Yangzhou: Yangzhou University, 2020. (in Chinese) | |
41 |
LANDMAN W J M , MEVIUS D J , VELDMAN K T , et al. In vitro antibiotic susceptibility of Dutch Mycoplasma synoviae field isolates originating from joint lesions and the respiratory tract of commercial poultry[J]. Avian Pathol, 2008, 37 (4): 415- 420.
doi: 10.1080/03079450802216637 |
42 |
GAUTIER-BOUCHARDON A V , REINHARDT A K , KOBISCH M , et al. In vitro development of resistance to enrofloxacin, erythromycin, tylosin, tiamulin and oxytetracycline in Mycoplasma gallisepticum, Mycoplasma iowae and Mycoplasma synoviae[J]. Vet Microbiol, 2002, 88 (1): 47- 58.
doi: 10.1016/S0378-1135(02)00087-1 |
43 |
LIMPAVITHAYAKUL K , SASIPREEYAJAN J , PAKPINYO S . Molecular characterization and antimicrobial susceptibility profiles of Thai Mycoplasma synoviae isolates[J]. Sci Rep, 2023, 13 (1): 2002.
doi: 10.1038/s41598-023-29266-9 |
44 | GAUTIER-BOUCHARDON A V. Antimicrobial resistance in Mycoplasma spp[J]. Microbiol Spectr, 2018, 6(4). [2024-05-17]. https://doi.org/10.1128/microbiolspec.arba-0030-2018. |
45 |
NHUNG N T , CHANSIRIPORNCHAI N , CARRIQUE-MAS J J . Antimicrobial resistance in bacterial poultry pathogens: a review[J]. Front Vet Sci, 2017, 4, 126.
doi: 10.3389/fvets.2017.00126 |
46 |
BRADBURY J M , YAVARI C A , GILES C J . In vitro evaluation of various antimicrobials against Mycoplasma gallisepticum and Mycoplasma synoviae by the micro-broth method, and comparison with a commercially-prepared test system[J]. Avian Pathol, 1994, 23 (1): 105- 115.
doi: 10.1080/03079459408418978 |
47 |
KLEVEN S H . Control of avian mycoplasma infections in commercial poultry[J]. Avian Dis, 2008, 52 (3): 367- 374.
doi: 10.1637/8323-041808-Review.1 |
48 |
SCHULTZ K K , STRAIT E L , ERICKSON B Z , et al. Optimization of an antibiotic sensitivity assay for Mycoplasma hyosynoviae and susceptibility profiles of field isolates from 1997 to 2011[J]. Vet Microbiol, 2012, 158 (1-2): 104- 108.
doi: 10.1016/j.vetmic.2012.02.002 |
49 | MCCORMACK W M . Susceptibility of mycoplasmas to antimicrobial agents: clinical implications[J]. Clin Infect Dis, 1993, 17 (Suppl 1): S200- S201. |
50 |
WU C C , SHRYOCK T R , LIN T L , et al. Antimicrobial susceptibility of Mycoplasma hyorhinis[J]. Vet Microbiol, 2000, 76 (1): 25- 30.
doi: 10.1016/S0378-1135(00)00221-2 |
51 |
GAURIVAUD P , LAIGRET F , BOVE J M . Insusceptibility of members of the class Mollicutes to rifampin: studies of the Spiroplasma citri RNA polymerase beta-subunit gene[J]. Antimicrob Agents Chemother, 1996, 40 (4): 858- 862.
doi: 10.1128/AAC.40.4.858 |
52 | OLAITAN A O , MORAND S , ROLAIN J M . Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria[J]. Front Microbiol, 2014, 5, 643. |
53 |
KANG T H , ZHOU M H , YAN X , et al. Biofilm formation and correlations with drug resistance in Mycoplasma synoviae[J]. Vet Microbiol, 2023, 283, 109777.
doi: 10.1016/j.vetmic.2023.109777 |
54 | GILBERT P , MAIRA-LITRAN T , MCBAIN A J , et al. The physiology and collective recalcitrance of microbial biofilm communities[J]. Adv Microb Physiol, 2002, 46, 202- 256. |
55 |
LYSNYANSKY I , GERCHMAN I , MIKULA I , et al. Molecular characterization of acquired enrofloxacin resistance in Mycoplasma synoviae field isolates[J]. Antimicrob Agents Chemother, 2013, 57 (7): 3072- 3077.
doi: 10.1128/AAC.00203-13 |
56 |
LYSNYANSKY I , GERCHMAN I , FLAMINIO B , et al. Decreased susceptibility to macrolide-lincosamide in Mycoplasma synoviae is associated with mutations in 23S ribosomal RNA[J]. Microb Drug Resist, 2015, 21 (6): 581- 589.
doi: 10.1089/mdr.2014.0290 |
57 | LI B B , SHEN J Z , CAO X Y , et al. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum[J]. FEMS Microbiol Lett, 2010, 308 (2): 144- 149. |
58 |
FEBERWEE A , LANDMAN W J M , VON BANNISEHT-WYSMULLER T , et al. The effect of a live vaccine on the horizontal transmission of Mycoplasma gallisepticum[J]. Avian Pathol, 2006, 35 (5): 359- 366.
doi: 10.1080/03079450600924226 |
59 |
FEBERWEE A , MORROW C J , GHORASHI S A , et al. Effect of a live Mycoplasma synoviae vaccine on the production of eggshell apex abnormalities induced by a M. synoviae infection preceded by an infection with infectious bronchitis virus D1466[J]. Avian Pathol, 2009, 38 (5): 333- 340.
doi: 10.1080/03079450903183652 |
60 | 招丽婵, 覃健萍, 王占新, 等. 鸡滑液囊支原体的流行调查及不同地区分离株药物敏感性分析[J]. 中国兽医杂志, 2019, 55 (6): 9- 13. |
ZHAO L C , QIN J P , WANG Z X , et al. Epidemic investigation and drug sensitivity analysis of Mycoplasma synoviae from different geographical locations[J]. Chinese Journal of Veterinary Medicine, 2019, 55 (6): 9- 13. | |
61 |
HONG Y , GARCÍA M , LEITING V , et al. Specific detection and typing of Mycoplasma synoviae strains in poultry with PCR and DNA sequence analysis targeting the hemagglutinin encoding gene vlhA[J]. Avian Dis, 2004, 48 (3): 606- 616.
doi: 10.1637/7156-011504R |
62 | 丁美娟, 卢凤英, 严鹏, 等. 鸡滑液囊支原体不同地区分离株对常用抗菌药物的敏感性试验[J]. 中国兽药杂志, 2015, 49 (10): 52- 55. |
DING M J , LU F Y , YAN P , et al. Sensitivity test of Mycoplasma synoviae isolates from different geographical locations to common antimicrobial drugs[J]. Chinese Journal of Veterinary Drug, 2015, 49 (10): 52- 55. | |
63 | 顾的乐. 鸡滑液囊支原体的分离鉴定及耐药性分析[J]. 中国新技术新产品, 2014, (13): 165- 166. |
GU D L . Isolation, identification, and drug resistance analysis of Mycoplasma synoviae[J]. New Technology & New Products of China, 2014, (13): 165- 166. | |
64 |
石晓磊, 齐田苗, 边海霞, 等. 宁夏地区鸡滑液囊支原体的分离鉴定与药敏试验[J]. 动物医学进展, 2018, 39 (11): 134- 136.
doi: 10.3969/j.issn.1007-5038.2018.11.029 |
SHI X L , QI T M , BIAN H X , et al. Isolation, identification and drug susceptibility test of Mycoplasma synoviae in chickens of Ningxia region[J]. Progress in Veterinary Medicine, 2018, 39 (11): 134- 136.
doi: 10.3969/j.issn.1007-5038.2018.11.029 |
|
65 | DUFOUR-GESBERT F , DHEILLY A , MAROIS C , et al. Epidemiological study on Mycoplasma synoviae infection in layers[J]. Vet Microbiol, 2006, 114 (1/2): 148- 154. |
[1] | 郑芮, 刘紫石, 张康友, 颜勇, 魏玲, 泽仁翁姆, 丁则德米, 黄建钧, 王利, 魏勇. 花生茎源茉莉炭疽菌的分离鉴定及生物学特性研究[J]. 畜牧兽医学报, 2024, 55(5): 2206-2213. |
[2] | 张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55(4): 1511-1520. |
[3] | 李芃绪, 李世景, 孙骏, 项维, 赵苗苗, 侯天牧, 李华明, 广敏, 陈瑞格, 徐梦然, 吴晓敏, 姜合祥, 雷连成, 张付贤. 致脑膜炎猪链球菌2型的分子分型鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(3): 1192-1207. |
[4] | 赵菲菲, 李杰, 韩宁, 谢仕廷, 曾振灵. 分离自屠宰场的肺炎克雷伯菌的耐药性分析[J]. 畜牧兽医学报, 2023, 54(7): 3044-3053. |
[5] | 吕若一, 司晓慧, 孙志刚, 史晓敏, 刘晓晔. 猪链球菌耐药现状分析及感染防控措施[J]. 畜牧兽医学报, 2023, 54(12): 4920-4933. |
[6] | 张凯川, 王晋宇, 李守军, 贾坤. 广东省羊源肺炎克雷伯菌遗传进化与毒力基因及耐药性分析[J]. 畜牧兽医学报, 2023, 54(1): 328-337. |
[7] | 佟盼盼, 黄顺敏, 王芋丹, 施旭辉, 陈文霞, 宋鑫龙, 张毅, 苏战强, 谢金鑫. 新疆地区腹泻仔猪源大肠杆菌的分群、血清型鉴定及耐药性分析[J]. 畜牧兽医学报, 2023, 54(1): 414-420. |
[8] | 肖克, 陈婷, 赵其平, 朱顺海, 董辉, 刘曼玉, 于钰, 黄兵, 韩红玉. 柔嫩艾美耳球虫含HD结构域蛋白特性和功能初步研究[J]. 畜牧兽医学报, 2022, 53(8): 2608-2620. |
[9] | 许李锋, 贾晨宇, 陈福再, 方梦园, 刘孝丹, 陈吉龙, 李训良. 1株鸡滑液囊支原体的分离鉴定与全基因组分析[J]. 畜牧兽医学报, 2022, 53(8): 2663-2676. |
[10] | 王喜, 李珂, 李廷翠, 严红亚, 赵蓉, 常志顺, 廖明, 孙敏华, 信爱国. 75株蛋鸡源沙门菌的MLST分型与耐药性分析[J]. 畜牧兽医学报, 2022, 53(5): 1626-1631. |
[11] | 赵学亮, 王斌, 苗永强, 赵浩宇, 谢青芳, 王娟, 杨增岐. 陕西地区羊源致病性大肠杆菌耐药性分析与毒力基因检测[J]. 畜牧兽医学报, 2022, 53(5): 1644-1648. |
[12] | 张临, 卢芳, 付恒峰, 姜西迪, 魏祺灵, 漆彩丽, 高海侠, 李琳. 鼠伤寒沙门菌BaeSR对氟喹诺酮类药物耐药性的调控机制[J]. 畜牧兽医学报, 2022, 53(3): 894-903. |
[13] | 刘丽佳, 王誉, 张焕容, 王嘉博. 7株鸡滑液囊支原体四川分离株全基因组分析[J]. 畜牧兽医学报, 2022, 53(2): 505-519. |
[14] | 何绿琴, 闫雪锋, 文心田, 曹三杰, 黄小波, 伍锐, 赵勤, 文翼平. 副猪嗜血杆菌qseB、qseC双基因缺失株的构建及生物学特性[J]. 畜牧兽医学报, 2022, 53(2): 529-537. |
[15] | 余蕴, 向勇, 李庆钵, 刘鹏, 黎丽珍, 廖明, 曹伟胜. 种蛋孵化死胚及孵化厅环境样本中铜绿假单胞菌的分离鉴定及其耐药性分析[J]. 畜牧兽医学报, 2022, 53(2): 548-555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||