畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2692-2700.doi: 10.11843/j.issn.0366-6964.2024.06.040
李明(), 崔洪伟, 高婕, 安乐乐, 李松励*(
), 饶正华
收稿日期:
2023-08-03
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
李松励
E-mail:liming01@caas.cn;lisongli@caas.cn
作者简介:
李明(1983-),男,河北唐山人,博士,主要从事动物肠道微生物与健康研究,E-mail:liming01@caas.cn
基金资助:
Ming LI(), Hongwei CUI, Jie GAO, Lele AN, Songli LI*(
), Zhenghua RAO
Received:
2023-08-03
Online:
2024-06-23
Published:
2024-06-28
Contact:
Songli LI
E-mail:liming01@caas.cn;lisongli@caas.cn
摘要:
旨在分析死亡白羽肉鸡肠道中的致病微生物,明确白羽肉鸡的死因,为白羽肉鸡的科学防病和治病提供新思路。采集养鸡场病死白羽肉鸡的肠道内容物,利用宏基因组测序、序列拼接、分箱技术、进化树分析、物种注释鉴定白羽肉鸡肠道中的致病微生物,通过基因组毒力基因和耐药基因的注释,阐述病原微生物的致病和耐药机制。结果显示:病死白羽肉鸡肠道内容物样品中检出的致病微生物为禽类致病性大肠杆菌(avian pathogenic Escherichia coli),经序列拼接和分箱技术得到病原菌全基因组序列,大小为4 998 208 bp,完整度为99.23%。该菌含有毒力基因192种,主要编码鞭毛、纤毛合成相关蛋白、定植相关蛋白、菌素合成相关蛋白,含有耐药基因88种,主要涉及28类抗生素的耐药,表明上述种类抗生素对感染禽类致病性大肠杆菌的白羽肉鸡无治疗作用,最终导致白玉肉鸡死亡。本研究利用宏基因测序技术可有效分析白羽肉鸡的致病微生物及致病、耐药机制,可在白羽肉鸡发病早期帮助养殖者了解病因,并有针对性地指导科学用药,减少经济损失。
中图分类号:
李明, 崔洪伟, 高婕, 安乐乐, 李松励, 饶正华. 白羽肉鸡小肠内容物中致病性大肠杆菌的鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(6): 2692-2700.
Ming LI, Hongwei CUI, Jie GAO, Lele AN, Songli LI, Zhenghua RAO. Identification and Genomic Analysis of Pathogenic Escherichia coli in Small Intestinal Content of White Feather Broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2692-2700.
表 1
分箱统计信息"
箱体名称 Bin name | 完整度/% Completeness | 污染度/% Contamination | GC含量 GC content | 物种分类 Lineage | N50 N50 | 基因组大小/bp Genome size |
bin.1 | 99.65 | 1.279 | 0.677 | Sphingomonadales | 64191 | 4 507 736 |
bin.3 | 99.23 | 1.231 | 0.506 | Enterobacteriaceae | 27652 | 4 998 208 |
bin.5 | 93.12 | 3.713 | 0.384 | Lactobacillales | 17907 | 23 731 96 |
bin.4 | 91.70 | 8.359 | 0.417 | Lactobacillales | 5667 | 1 387 238 |
bin.2 | 74.36 | 9.276 | 0.363 | Lactobacillus | 19062 | 1 400 494 |
1 | 金卫东. 肉鸡产业战略发展思考[J]. 中国禽业导刊, 2023, 40 (7): 15- 18. |
JIN W D . Thoughts on the strategic development of the broiler industry[J]. Guide to Chinese Poultry, 2023, 40 (7): 15- 18. | |
2 | 李明, 饶正华, 梁洺源, 等. 基于宏基因测序的微生物饲料添加剂菌群结构及质量分析[J]. 中国饲料, 2022, (21): 23- 27. |
LI M , RAO Z H , LIANG M Y , et al. Analysis of microbiota structure and quality of microbial feed additives based on metagenomic sequencing[J]. China Feed, 2022, (21): 23- 27. | |
3 | 冯海鹏, 辛蕊华, 张凯, 等. 中兽药复方组合与抗生素防治肉鸡呼吸道疾病的协同效应[J]. 中国畜牧兽医, 2020, 47 (3): 940- 947. |
FENG H P , XIN R H , ZHANG K , et al. Synergistic effect of combination of Chinese veterinary drugs and antibiotics on the prevention and treatment of respiratory diseases in broilers[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (3): 940- 947. | |
4 |
SOLEYMANI S , TAVASSOLI A , HASHEMI TABAR G , et al. Design, development, and evaluation of the efficacy of a nucleic acid-free version of a bacterial ghost candidate vaccine against avian pathogenic E. coli (APEC) O78:K80 serotype[J]. Vet Res, 2020, 51 (1): 144.
doi: 10.1186/s13567-020-00867-w |
5 |
GUABIRABA R , SCHOULER C . Avian colibacillosis: still many black holes[J]. FEMS Microbiol Lett, 2015, 362 (15): fnv118.
doi: 10.1093/femsle/fnv118 |
6 |
KATHAYAT D , LOKESH D , RANJIT S , et al. Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies[J]. Pathogens, 2021, 10 (4): 467.
doi: 10.3390/pathogens10040467 |
7 |
JEONG J , LEE J Y , KANG M S , et al. Comparative characteristics and zoonotic potential of avian pathogenic Escherichia coli (APEC) isolates from chicken and duck in South Korea[J]. Microorganisms, 2021, 9 (5): 946.
doi: 10.3390/microorganisms9050946 |
8 |
JOHNSON J R , KUSKOWSKI M A , MENARD M , et al. Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status[J]. J Infect Dis, 2006, 194 (1): 71- 78.
doi: 10.1086/504921 |
9 |
MELLATA M , DHO-MOULIN M , DOZOIS C M , et al. Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity[J]. Infect Immun, 2003, 71 (1): 536- 540.
doi: 10.1128/IAI.71.1.536-540.2003 |
10 |
DZIVA F , STEVENS M P . Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts[J]. Avian Pathol, 2008, 37 (4): 355- 366.
doi: 10.1080/03079450802216652 |
11 |
REESE S , DALAMANI G , KASPERS B . The avian lung-associated immune system: a review[J]. Vet Res, 2006, 37 (3): 311- 324.
doi: 10.1051/vetres:2006003 |
12 | 杨建彬, 王荣湖. 肉仔鸡不明原因急性死亡的调查与研究[J]. 中国畜牧兽医, 2008, 35 (12): 150- 151. |
YANG J B , WANG R H . Investigation and study on unexplained acute death of broiler chickens[J]. China Animal Husbandry & Veterinary Medicine, 2008, 35 (12): 150- 151. | |
13 | 田云先. 白羽肉鸡疾病流行特点及对策措施[J]. 中国畜牧兽医文摘, 2015, 31 (3): 117. |
TIAN Y X . Epidemic characteristics and countermeasures of diseases in white feathered broiler chickens[J]. China Animal Husbandry & Veterinary Medicine, 2015, 31 (3): 117. | |
14 | COUGHLAN L M , COTTER P D , HILL C , et al. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries[J]. Front Microbiol, 2015, 6, 672. |
15 |
HUANG K Y , CHANG T H , JHONG J H , et al. Identification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas[J]. BMC Syst Biol, 2017, 11 (S7): 131.
doi: 10.1186/s12918-017-0503-4 |
16 | LI S T , MANN D A , ZHANG S K , et al. Microbiome-informed food safety and quality: longitudinal consistency and cross-sectional distinctiveness of retail chicken breast microbiomes[J]. mSystems, 2020, 5 (5): e00589- 20. |
17 |
ZHOU Z C , XU L , ZHU L , et al. Metagenomic analysis of microbiota and antibiotic resistome in household activated carbon drinking water purifiers[J]. Environ Int, 2021, 148, 106394.
doi: 10.1016/j.envint.2021.106394 |
18 |
NAGARKAR M , KEELY S P , BRINKMAN N E , et al. Human- and infrastructure-associated bacteria in greywater[J]. J Appl Microbiol, 2021, 131 (5): 2178- 2192.
doi: 10.1111/jam.15118 |
19 |
SCHAGES L , WICHERN F , GEISEN S , et al. Distinct resistomes and microbial communities of soils, wastewater treatment plants and households suggest development of antibiotic resistances due to distinct environmental conditions in each environment[J]. Antibiotics (Basel), 2021, 10 (5): 514.
doi: 10.3390/antibiotics10050514 |
20 |
LIN L M , WANG Y , XU L , et al. Microbiome-host co-oscillation patterns in remodeling of colonic homeostasis during adaptation to a high-grain diet in a sheep model[J]. Anim Microbiome, 2020, 2 (1): 22.
doi: 10.1186/s42523-020-00041-9 |
21 |
CHAITRA H S , SINGH A , PANDIYAN K , et al. Sex biased variance in the structural and functional diversity of the midgut bacterial community of last instar larvae of Pectinophora gossypiella (lepidoptera: gelechiidae)[J]. Microb Ecol, 2022, 83 (4): 1112- 1122.
doi: 10.1007/s00248-021-01829-1 |
22 | WANG C , SONG Y Q , TANG N , et al. The shared resistome of human and pig microbiota is mobilized by distinct genetic elements[J]. Appl Environ Microbiol, 2021, 87 (5): e01910- 20. |
23 |
YU Z T , MORRISON M . Improved extraction of PCR-quality community DNA from digesta and fecal samples[J]. BioTechniques, 2004, 36 (5): 808- 812.
doi: 10.2144/04365ST04 |
24 |
CHEN S F , ZHOU Y Q , CHEN Y R , et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34 (17): i884- i890.
doi: 10.1093/bioinformatics/bty560 |
25 |
WOOD D E , LU J , LANGMEAD B . Improved metagenomic analysis with Kraken 2[J]. Genome Biol, 2019, 20 (1): 257.
doi: 10.1186/s13059-019-1891-0 |
26 |
LU J , BREITWIESER F P , THIELEN P , et al. Bracken: estimating species abundance in metagenomics data[J]. PeerJ Comput Sci, 2017, 3, e104.
doi: 10.7717/peerj-cs.104 |
27 |
URITSKIY G V , DIRUGGIERO J , TAYLOR J . MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis[J]. Microbiome, 2018, 6 (1): 158.
doi: 10.1186/s40168-018-0541-1 |
28 |
ALTSCHUL S F , GISH W , MILLER W , et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215 (3): 403- 410.
doi: 10.1016/S0022-2836(05)80360-2 |
29 | ARITA M , KARSCH-MIZRACHI I , COCHRANE G . The international nucleotide sequence database collaboration[J]. Nucleic Acids Res, 2021, 49 (1): D121- D124. |
30 |
SEEMANN T . Prokka: rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30 (14): 2068- 2069.
doi: 10.1093/bioinformatics/btu153 |
31 |
BUCHFINK B , REUTER K , DROST H G . Sensitive protein alignments at tree-of-life scale using DIAMOND[J]. Nat Methods, 2021, 18 (4): 366- 368.
doi: 10.1038/s41592-021-01101-x |
32 | LIU B , ZHENG D D , ZHOU S Y , et al. VFDB 2022:a general classification scheme for bacterial virulence factors[J]. Nucleic Acids Res, 2022, 50 (1): D912- D917. |
33 | ALCOCK B P , HUYNH W , CHALIL R , et al. CARD 2023:expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database[J]. Nucleic Acids Res, 2023, 51 (1): D690- D699. |
34 |
KRAVIK I H , KASPERSEN H , SJURSETH S K , et al. High sequence similarity between avian pathogenic E. coli isolates from individual birds and within broiler chicken flocks during colibacillosis outbreaks[J]. Vet Microbiol, 2022, 267, 109378.
doi: 10.1016/j.vetmic.2022.109378 |
35 |
PANYAKO P M , OMMEH S C , KURIA S N , et al. Metagenomic characterization reveals virus coinfections associated with Newcastle disease virus among poultry in Kenya[J]. J Basic Microbiol, 2023, 63 (12): 1383- 1396.
doi: 10.1002/jobm.202300390 |
36 |
ZAMANI N H , HOSSEINI H , KAFI Z Z , et al. Whole-genome characterization of avian picornaviruses from diarrheic broiler chickens co-infected with multiple picornaviruses in Iran[J]. Virus Genes, 2023, 59 (1): 79- 90.
doi: 10.1007/s11262-022-01938-0 |
37 |
TREGASKIS P L , DEVANEY R , SMYTH V J . The first whole genome sequence and characterisation of avian nephritis virus genotype 3[J]. Viruses, 2021, 13 (2): 235.
doi: 10.3390/v13020235 |
38 |
KAPGATE S S , BARBUDDHE S B , KUMANAN K . Next generation sequencing technologies: tool to study avian virus diversity[J]. Acta Virol, 2015, 59 (1): 3- 13.
doi: 10.4149/av_2015_01_3 |
39 |
MANGIAMELE P , NICHOLSON B , WANNEMUEHLER Y , et al. Complete genome sequence of the avian pathogenic Escherichia coli strain APEC O78[J]. Genome Announc, 2013, 1 (2): e0002613.
doi: 10.1128/genomeA.00026-13 |
40 |
CUMMINS M L , LI D , AHMAD A , et al. Whole genome sequencing of avian pathogenic Escherichia coli causing bacterial chondronecrosis and osteomyelitis in Australian poultry[J]. Microorganisms, 2023, 11 (6): 1513.
doi: 10.3390/microorganisms11061513 |
41 |
BHATTARAI R K , BASNET H B , DHAKAL I P , et al. Virulence genes of avian pathogenic Escherichia coli isolated from commercial chicken in Nepal[J]. Comp Immunol Microb Infect Dis, 2023, 95, 101961.
doi: 10.1016/j.cimid.2023.101961 |
42 |
SIDHU G S , GO A , ATTAR B M , et al. Rifaximin versus norfloxacin for prevention of spontaneous bacterial peritonitis: a systematic review[J]. BMJ Open Gastroenterol, 2017, 4 (1): e000154.
doi: 10.1136/bmjgast-2017-000154 |
43 | WANG J K , LIU Y , YIN Q X . Studies on the mechanism of primary nucleation of ciprofloxacin hydrochloride monohydrate[J]. Chin J Chem Eng, 2002, 10 (4): 375- 380. |
44 |
LI M , WEN F , ZHAO S G , et al. Exploring the molecular basis for binding of inhibitors by threonyl-tRNA synthetase from Brucella abortus: a virtual screening study[J]. Int J Mol Sci, 2016, 17 (7): 1078.
doi: 10.3390/ijms17071078 |
[1] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[2] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[3] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[4] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[5] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[6] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[7] | 龙唐晖, 詹彦波, 廖观香, 陈新锋, 张健, 李艳娇, 欧阳克蕙, 邱清华. 饲粮添加赖氨酸对肉牛粪便发酵参数和微生物菌群结构的影响[J]. 畜牧兽医学报, 2024, 55(5): 2042-2049. |
[8] | 刘佳惠, 吴开开, 王磊, 张康, 韩松伟, 陈富斌, 徐国伟, 郭志廷, 古雪艳, 张景艳, 李建喜. 黄芪多糖、皂苷及益生菌复合物对感染大肠杆菌肉鸡肠道的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2241-2252. |
[9] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[10] | 牛晓雨, 邢媛媛, 李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(4): 1467-1477. |
[11] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[12] | 陈雪清, 李志强, 吴雨龙, 张崇昊, 张源淑. 临床腹泻猪空肠组织中肾素-血管紧张素系统(RAS)的表达变化及与肠道炎症的关系[J]. 畜牧兽医学报, 2024, 55(2): 751-758. |
[13] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[14] | 牟湘钰, 徐云若, 胡静怡, 周欣妍, 朱勇文. 家禽支链氨基酸营养需要研究进展[J]. 畜牧兽医学报, 2024, 55(1): 31-38. |
[15] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||