[1] |
ZHU L, SHAHID M A, MARKHAM J, et al. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution[J]. BMC Genomics, 2018, 19(1):117.
|
[2] |
RAZIN S. Mycoplasmas[M]//BARON S. Medical Microbiology. 4th ed. Galveston:University of Texas Medical Branch at Galveston, 1996.
|
[3] |
CATANIA S, BOTTINELLI M, FINCATO A, et al. Evaluation of Minimum Inhibitory Concentrations for 154 Mycoplasma synoviae isolates from Italy collected during 2012-2017[J]. PLoS One, 2019, 14(11):e0224903.
|
[4] |
FEBERWEE A, DE WIT J J, LANDMAN W J M. Induction of eggshell apex abnormalities by Mycoplasma synoviae:field and experimental studies[J]. Avian Pathol, 2009, 38(1):77-85.
|
[5] |
CATANIA S, BILATO D, GOBBO F, et al. Treatment of eggshell abnormalities and reduced egg production caused by Mycoplasma synoviae infection[J]. Avian Dis, 2010, 54(2):961-964.
|
[6] |
XUE J, XU M Y, MA Z J, et al. Serological investigation of Mycoplasma synoviae infection in China from 2010 to 2015[J]. Poult Sci, 2017, 96(9):3109-3112.
|
[7] |
LANDMAN W J M. Is Mycoplasma synoviae outrunning Mycoplasma gallisepticum?A viewpoint from the Netherlands[J]. Avian Pathol, 2014, 43(1):2-8.
|
[8] |
KREIZINGER Z, GRÓZNER D, SULYOK K M, et al. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe[J]. BMC Vet Res, 2017, 13(1):342.
|
[9] |
LUCIANO R L, CARDOSO A L S P, STOPPA G F Z, et al. Comparative study of serological tests for Mycoplasma synoviae diagnosis in commercial poultry breeders[J]. Vet Med Int, 2011, 2011:304349.
|
[10] |
MORONATO M L, CECCHINATO M, FACCHETTI G, et al. Application of different laboratory techniques to monitor the behaviour of a Mycoplasma synoviae vaccine (MS-H) in broiler breeders[J]. BMC Vet Res, 2018, 14(1):357.
|
[11] |
GAUTIER-BOUCHARDON A V. Antimicrobial resistance in Mycoplasma spp[J]. Microbiol Spectr, 2018, 6(4), doi:10. 1128/microbiolspec. ARBA-0030-2018.
|
[12] |
KREIZINGER Z, SULYOK K M, GRÓZNER D, et al. Development of mismatch amplification mutation assays for the differentiation of MS1 vaccine strain from wild-type Mycoplasma synoviae and MS-H vaccine strains[J]. PLoS One, 2017, 12(4):e0175969.
|
[13] |
MARKHAM J F, SCOTT P C, WHITHEAR K G. Field evaluation of the safety and efficacy of a temperature-sensitive Mycoplasma synoviae live vaccine[J]. Avian Dis, 1998, 42(4):682-689.
|
[14] |
丁美娟, 张小飞, 尹秀凤, 等. 鸡滑液囊支原体的分离和鉴定研究[J]. 中国家禽, 2011, 33(24):27-29.DING M J, ZHANG X F, YIN X F, et al. Isolation and identification of Mycoplasma synoviae from broiler breeders[J]. China Poultry, 2011, 33(24):27-29. (in Chinese)
|
[15] |
吴移谋, 叶元康. 支原体学[M]. 2版. 北京:人民卫生出版社, 2008.WU Y M, YE Y K. Mycoplasmalogy[M]. 2nd ed. Beijing:People's Medical Publishing House, 2008. (in Chinese)
|
[16] |
HANNAN P C. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. International Research Programme on Comparative Mycoplasmology[J]. Vet Res, 2000, 31(4):373-395.
|
[17] |
CHIN C S, ALEXANDER D H, MARKS P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data[J]. Nat Methods, 2013, 10(6):563-569.
|
[18] |
KOREN S, WALENZ B P, BERLIN K, et al. Canu:scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Res, 2017, 27(5):722-736.
|
[19] |
DELCHER A L, BRATKE K A, POWERS E C, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics, 2007, 23(6):673-679.
|
[20] |
LOWE T M, EDDY S R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Res, 1997, 25(5):955-964.
|
[21] |
LAGESEN K, HALLIN P, RØDLAND E A, et al. RNAmmer:consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Res, 2007, 35(9):3100-3108.
|
[22] |
BENSON G. Tandem repeats finder:a program to analyze DNA sequences[J]. Nucleic Acids Res, 1999, 27(2):573-580.
|
[23] |
HSIAO W W L, UNG K, AESCHLIMAN D, et al. Evidence of a large novel gene pool associated with prokaryotic genomic islands[J]. PLoS Genet, 2005, 1(5):e62.
|
[24] |
AKHTER S, AZIZ R K, EDWARDS R A. PhiSpy:a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies[J]. Nucleic Acids Res, 2012, 40(16):e126.
|
[25] |
JEHL M A, ARNOLD R, RATTEI T. Effective——a database of predicted secreted bacterial proteins[J]. Nucleic Acids Res, 2011, 39(Database issue):D591-D595.
|
[26] |
KANEHISA M, FURUMICHI M, TANABE M, et al. KEGG:new perspectives on genomes, pathways, diseases and drugs[J]. Nucleic Acids Res, 2017, 45(D1):D353-D361.
|
[27] |
JIA B F, RAPHENYA A R, ALCOCK B, et al. CARD 2017:expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Res, 2017, 45(D1):D566-D573.
|
[28] |
CANTAREL B L, COUTINHO P M, RANCUREL C, et al. The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics[J]. Nucleic Acids Res, 2009, 37(Database issue):D233-D238.
|
[29] |
URBAN M, CUZICK A, RUTHERFORD K, et al. PHI-base:a new interface and further additions for the multi-species pathogen-host interactions database[J]. Nucleic Acids Res, 2017, 45(D1):D604-D610.
|
[30] |
CHEN L H, YANG J, YU J, et al. VFDB:a reference database for bacterial virulence factors[J]. Nucleic Acids Res, 2005, 33(Database issue):D325-D328.
|
[31] |
SAIER M H Jr, REDDY V S, TSU B V, et al. The Transporter Classification Database (TCDB):recent advances[J]. Nucleic Acids Res, 2016, 44(D1):D372-D379.
|
[32] |
ROBERTS R J, VINCZE T, POSFAI J, et al. REBASE——a database for DNA restriction and modification:enzymes, genes and genomes[J]. Nucleic Acids Res, 2015, 43(Database issue):D298-D299.
|
[33] |
BAO S J, GUO X Q, YU S Q, et al. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein[J]. BMC Vet Res, 2014, 10:223.
|
[34] |
SONG Y J, LA T M, KIM T, et al. Genome analysis of nicotinamide adenine dinucleotide-independent Mycoplasma synoviae isolates from Korea[J]. Pathogens, 2021, 10(10):1231.
|
[35] |
YAGIHASHI T, KATO K. Diversity in nicotinamide-adenine dinucleotide requirement for the growth of different strains of Mycoplasma synoviae[J]. Res Vet Sci, 1984, 37(3):353-354.
|
[36] |
PADAYATTI P S, LEE S C, STANFIELD R L, et al. Structural insights into the lipid A transport pathway in MsbA[J]. Structure, 2019, 27(7):1114-1123. e3.
|
[37] |
HO H, MIU A, ALEXANDER M K, et al. Structural basis for dual-mode inhibition of the ABC transporter MsbA[J]. Nature, 2018, 557(7704):196-201.
|
[38] |
郭 溆, 罗红梅, 宋经元, 等. 糖基转移酶在植物次生代谢途径中的研究进展[J]. 世界科学技术(中医药现代化), 2012, 14(6):2126-2130.GUO X, LUO H M, SONG J Y, et al. Advances in the study of glycosyltransferases involved in plant secondary metabolite biosynthesis[J]. World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica, 2012, 14(6):2126-2130. (in Chinese)
|
[39] |
ROTTEM S. Interaction of mycoplasmas with host cells[J]. Physiol Rev, 2003, 83(2):417-432.
|
[40] |
HAGEMANN L, GRVNDEL A, JACOBS E, et al. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix[J]. Pathog Dis, 2017, 75(3), doi:10. 1093/femspd/ftx017.
|
[41] |
THOMAS C, JACOBS E, DUMKE R. Characterization of pyruvate dehydrogenase subunit B and enolase as plasminogen-binding proteins in Mycoplasma pneumoniae[J]. Microbiology (Reading), 2013, 159(Pt 2):352-365.
|
[42] |
INDIKOVÁ I, MUCH P, STIPKOVITS L, et al. Role of the GapA and CrmA cytadhesins of Mycoplasma gallisepticum in promoting virulence and host colonization[J]. Infect Immun, 2013, 81(5):1618-1624.
|
[43] |
YU Y F, LIU M J, HUA L Z, et al. Fructose-1, 6-bisphosphate aldolase encoded by a core gene of Mycoplasma hyopneumoniae contributes to host cell adhesion[J]. Vet Res, 2018, 49(1):114.
|
[44] |
ZHAO G, ZHANG H, CHEN X, et al. Mycoplasma bovis NADH oxidase functions as both a NADH oxidizing and O2 reducing enzyme and an adhesin[J]. Sci Rep, 2017, 7(1):44.
|
[45] |
CHEN R, YU Y F, FENG Z X, et al. Featured species-specific loops are found in the crystal structure of Mhp Eno, a cell surface adhesin from Mycoplasma hyopneumoniae[J]. Front Cell Infect Microbiol, 2019, 9:209.
|
[46] |
LANGEREIS J D, CREMERS A J H, VISSERS M, et al. Nontypeable Haemophilus influenzae invasive blood isolates are mainly phosphorylcholine negative and show decreased complement-mediated killing that is associated with lower binding of IgM and CRP in comparison to colonizing isolates from the oropharynx[J]. Infect Immun, 2019, 87(2):e00604-18.
|