畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2716-2726.doi: 10.11843/j.issn.0366-6964.2024.06.042
收稿日期:
2023-10-10
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
刁洪秀
E-mail:mszyzhangyan@foxmail.com;diaohongxiu@yeah.net
作者简介:
张琰(2000-),女,福建龙岩人,硕士,主要从事lncRNA与犬肿瘤研究,E-mail: mszyzhangyan@foxmail.com
基金资助:
Yan ZHANG(), Meijin WU, Jiahao ZHOU, Hongxiu DIAO*(
)
Received:
2023-10-10
Online:
2024-06-23
Published:
2024-06-28
Contact:
Hongxiu DIAO
E-mail:mszyzhangyan@foxmail.com;diaohongxiu@yeah.net
摘要:
旨在探究阿霉素对犬乳腺肿瘤细胞中lncRNAs分子的影响,寻找犬乳腺肿瘤潜在生物标志物和治疗靶点,本试验采用RNA-Seq技术对经阿霉素处理的犬乳腺肿瘤细胞进行转录组测序分析,筛选差异表达lncRNAs,应用GO富集和KEGG富集分析进行基因功能和途径注释并验证其表达情况。结果显示,经阿霉素处理后的犬乳腺肿瘤细胞中共有277个差异表达的lncRNAs,其中,147个表达上调,130个表达下调,主要涉及细胞新陈代谢、转录程序失调、ECM受体相互作用以及细胞坏死性凋亡等生物学过程。实时荧光定量PCR技术随机检测3个差异表达的lncRNAs,其表达趋势与RNA-Seq一致,表明RNA-Seq测序结果的准确性。本研究基于转录组学技术,综合分析阿霉素抗犬乳腺肿瘤细胞相关lncRNAs表达变化的整体特征,揭示其可能的调控新机制,为犬乳腺肿瘤的靶向治疗和潜在生物标志物的开发利用提供参考。
中图分类号:
张琰, 吴梅金, 周家豪, 刁洪秀. 阿霉素处理后对犬乳腺肿瘤细胞系CHMp lncRNAs差异表达的影响[J]. 畜牧兽医学报, 2024, 55(6): 2716-2726.
Yan ZHANG, Meijin WU, Jiahao ZHOU, Hongxiu DIAO. The Effect of Doxorubicin Treatment on the Differential Expression of lncRNAs in Canine Mammary Tumor CHMp Cell Line[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2716-2726.
表 1
荧光定量PCR引物"
lncRNA ID | 引物序列(5′→3′) Primer sequence | 产物长度/bp Products length |
MSTRG.21292.1 | CTCCCTGGACGTGATGGTAGAAGGACGGCAAGAAGC | 212 |
MSTRG.21304.2 | AACTCACAACTCAGCCGCCCCCACTTGCTGTTCGTTTGC | 157 |
MSTRG.21335.2 | CTCCGAGTAATTGCCCTTGCGCTTCACGTTGTATTGCAGGAG | 163 |
β-actin | CACCAACTGGGACGACATTGGCTTTGGGATTCAGG | 116 |
表 2
测序数据质量评估"
样品 Sample | CR/% | 错误率/% Error rate | Q20碱基百分比/% Q20 | Q30碱基百分比/% Q30 | GC含量/% GC content |
Dox_3 | 96.73 | 0.025 2 | 97.76 | 94.12 | 53.57 |
Dox_2 | 94.52 | 0.025 4 | 97.66 | 93.97 | 54.88 |
Dox_1 | 96.20 | 0.025 4 | 97.7 | 93.95 | 53.65 |
Ctrl_3 | 96.01 | 0.025 3 | 97.69 | 94.06 | 54.45 |
Ctrl_2 | 96.14 | 0.025 4 | 97.66 | 93.99 | 54.75 |
Ctrl_1 | 95.80 | 0.025 6 | 97.54 | 93.85 | 56.2 |
1 |
SUNG H , FERLAY J , SIEGEL R L , et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71 (3): 209- 249.
doi: 10.3322/caac.21660 |
2 |
RASOTTO R , BERLATO D , GOLDSCHMIDT M H , et al. Prognostic significance of canine mammary tumor histologic subtypes: an observational cohort study of 229 cases[J]. Vet Pathol, 2017, 54 (4): 571- 578.
doi: 10.1177/0300985817698208 |
3 |
GRAY M , MEEHAN J , MARTÍNEZ-PÉREZ C , et al. Naturally-occurring canine mammary tumors as a translational model for human breast cancer[J]. Front Oncol, 2020, 10, 617.
doi: 10.3389/fonc.2020.00617 |
4 |
GANESH K , MASSAGUE J . Targeting metastatic cancer[J]. Nat Med, 2021, 27 (1): 34- 44.
doi: 10.1038/s41591-020-01195-4 |
5 |
MEREDITH A M , DASS C R . Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism[J]. J Pharm Pharmacol, 2016, 68 (6): 729- 741.
doi: 10.1111/jphp.12539 |
6 |
ZHANG Y Y , MAO Q J , XIA Q M , et al. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers[J]. J Hematol Oncol, 2021, 14 (1): 169.
doi: 10.1186/s13045-021-01179-y |
7 |
MA Y , GUO G J , LI T T , et al. A novel imatinib-upregulated long noncoding RNA plays a critical role in inhibition of tumor growth induced by Abl oncogenes[J]. Mol Cancer, 2022, 21 (1): 5.
doi: 10.1186/s12943-021-01478-5 |
8 |
GROFF A F , SANCHEZ-GOMEZ D B , SORUCO M M L , et al. In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements[J]. Cell Rep, 2016, 16 (8): 2178- 2186.
doi: 10.1016/j.celrep.2016.07.050 |
9 |
ZHENG H H , DU C T , YU C , et al. Epidemiological investigation of canine mammary tumors in Mainland China between 2017 and 2021[J]. Front Vet Sci, 2022, 9, 843390.
doi: 10.3389/fvets.2022.843390 |
10 |
SIEGEL R L , MILLER K D , JEMAL A . Cancer statistics, 2018[J]. CA: Cancer J Clin, 2018, 68 (1): 7- 30.
doi: 10.3322/caac.21442 |
11 |
MAURIZI A , CIOCCA M , GIULIANI C , et al. Role of neural (N)-cadherin in breast cancer cell stemness and dormancy in the bone microenvironment[J]. Cancers, 2022, 14 (5): 1317.
doi: 10.3390/cancers14051317 |
12 |
ZHU Z , SHEN H Y , XU J L , et al. GATA3 mediates doxorubicin resistance by inhibiting CYB5R2-catalyzed iron reduction in breast cancer cells[J]. Drug Resist Updates, 2023, 69, 100974.
doi: 10.1016/j.drup.2023.100974 |
13 |
ALKAN F Ü , BAKIREL T , ÜSTÜNER O , et al. In vitro effects of doxorubicin and deracoxib on oxidative-stress-related parameters in canine mammary carcinoma cells[J]. Acta Vet Hung, 2014, 62 (3): 372- 385.
doi: 10.1556/avet.2014.012 |
14 |
LEVI M , SALAROLI R , PARENTI F , et al. Doxorubicin treatment modulates chemoresistance and affects the cell cycle in two canine mammary tumour cell lines[J]. BMC Vet Res, 2021, 17, 30.
doi: 10.1186/s12917-020-02709-5 |
15 |
BAKIREL T , ALKAN F Ü , ÜSTÜNER O , et al. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27[J]. J Vet Med Sci, 2016, 78 (4): 657- 668.
doi: 10.1292/jvms.15-0387 |
16 |
BORGHESI J , CACERES S , MARIO L C , et al. Effects of doxorubicin associated with amniotic membrane stem cells in the treatment of canine inflammatory breast carcinoma (IPC-366) cells[J]. BMC Vet Res, 2020, 16 (1): 353.
doi: 10.1186/s12917-020-02576-0 |
17 |
ZAMBRANO-ESTRADA X , LANDAVERDE-QUIROZ B , DUEÑAS-BOCANEGRA A A , et al. Molecular iodine/doxorubicin neoadjuvant treatment impair invasive capacity and attenuate side effect in canine mammary cancer[J]. BMC Vet Res, 2018, 14 (1): 87.
doi: 10.1186/s12917-018-1411-6 |
18 | ZHAO J , LI L , HAN Z Y , et al. Long noncoding RNAs, emerging and versatile regulators of tumor-induced angiogenesis[J]. Am J Cancer Res, 2019, 9 (7): 1367- 1381. |
19 |
HUARTE M . The emerging role of lncRNAs in cancer[J]. Nat Med, 2015, 21 (11): 1253- 1261.
doi: 10.1038/nm.3981 |
20 | 徐恩爽. LncRNA ENSCAFG42060通过miR-204-5p/SOX4轴调控犬乳腺肿瘤细胞他莫昔芬耐药机制研究[D]. 哈尔滨: 东北农业大学, 2021. |
XU E S. LncRNA ENSCAFG42060 regulates tamoxifen resistance by miR-204-5p/SOX4 axis in canine mammary gland tumor cells[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese) | |
21 | 郭晨明, 罗志文, 孔涵, 等. LncRNA XIST通过miR-20a-5p/HMGA2轴调控乳腺癌细胞增殖、迁移、侵袭和凋亡的机制[J]. 实用临床医药杂志, 2023, 27 (5): 61-66, 71. |
GUO C M , LUO Z W , KONG H , et al. Mechanism of lncRNA XIST regulating proliferation, migration, invasion and apoptosis of breast cancer cells through miR-20a-5p/HMGA2 axis[J]. Journal of Clinical Medicine in Practice, 2023, 27 (5): 61-66, 71. | |
22 | 吴雪芳, 瞿菲, 刘谦, 等. LNCRNA FAR2P1对乳腺癌细胞增殖迁移和凋亡的影响研究[J]. 现代生物医学进展, 2023, 23 (5): 801-806, 817. |
WU X F , QU F , LIU Q , et al. Effect of LNCRNA FAR2P1 on proliferation, migration and apoptosis of breast cancer cells[J]. Progress in Modern Biomedicine, 2023, 23 (5): 801-806, 817. | |
23 | 刘芳, 毛婷, 马兰, 等. 下调lncRNA LOXL1-AS1表达对乳腺癌细胞增殖和侵袭的影响[J]. 山西医科大学学报, 2023, 54 (3): 302- 312. |
LIU F , MAO T , MA L , et al. Effect of downregulating lncRNA LOXL1-AS1 expression on proliferation and invasion of breast cancer cells[J]. Journal of Shanxi Medical University, 2023, 54 (3): 302- 312. | |
24 |
XU E S , HU M X , GE R D , et al. LncRNA-42060 regulates tamoxifen sensitivity and tumor development via regulating the miR-204-5p/SOX4 axis in canine mammary gland tumor cells[J]. Front Vet Sci, 2021, 8, 654694.
doi: 10.3389/fvets.2021.654694 |
25 |
LU B C , ZHU Y F , WU J Y , et al. LncRNA34977 promotes the proliferation, migration, and invasion and inhibits the apoptosis of canine mammary tumors by regulating the expression of miR-8881/ELAVL4[J]. Funct Integr Genomics, 2023, 23 (1): 31.
doi: 10.1007/s10142-022-00955-4 |
26 |
LU B C , WU J Y , CHEN H B , et al. LncRNA expression profiles in canine mammary tumors identify lnc34977 as a promoter of proliferation, migration and invasion of canine mammary tumor cells[J]. Vet Sci, 2022, 9 (2): 82.
doi: 10.3390/vetsci9020082 |
27 |
JIANG Y F , ZHANG H Y , WANG J , et al. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy[J]. J Hematol Oncol, 2022, 15 (1): 34.
doi: 10.1186/s13045-022-01252-0 |
28 |
ZUCCARI D A P C , CASTRO R , JARDIM B V , et al. Immunohistochemical and molecular expression of laminin-332 gamma-2 chain in canine mammary tumors[J]. Arq Bras Med Vet Zootec, 2011, 63 (1): 28- 35.
doi: 10.1590/S0102-09352011000100005 |
29 |
NORTHEY J J , BARRETT A S , ACERBI I , et al. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217[J]. J Clin Invest, 2020, 130 (11): 5721- 5737.
doi: 10.1172/JCI129249 |
30 |
ISHIHARA S , INMAN D R , LI W J , et al. Mechano-signal transduction in mesenchymal stem cells induces prosaposin secretion to drive the proliferation of breast cancer cells[J]. Cancer Res, 2017, 77 (22): 6179- 6189.
doi: 10.1158/0008-5472.CAN-17-0569 |
31 |
THAKUR B , KUMAR Y , BHATIA A . Programmed necrosis and its role in management of breast cancer[J]. Pathol-Res Pract, 2019, 215 (11): 152652.
doi: 10.1016/j.prp.2019.152652 |
32 | KHORSANDI L , ORAZIZADEH M , NIAZVAND F , et al. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells[J]. Bratisl Lek Listy, 2017, 118 (2): 123- 128. |
33 |
LIU Z S , CHOKSI S , KWON H J , et al. Tumor necroptosis-mediated shedding of cell surface proteins promotes metastasis of breast cancer by suppressing anti-tumor immunity[J]. Breast Cancer Res, 2023, 25 (1): 10.
doi: 10.1186/s13058-023-01604-9 |
34 |
KARSCH-BLUMAN A , FEIGLIN A , ARBIB E , et al. Tissue necrosis and its role in cancer progression[J]. Oncogene, 2019, 38 (11): 1920- 1935.
doi: 10.1038/s41388-018-0555-y |
35 |
BRADNER J E , HNISZ D , YOUNG R A . Transcriptional addiction in cancer[J]. Cell, 2017, 168 (4): 629- 643.
doi: 10.1016/j.cell.2016.12.013 |
36 |
LIAO G B , LI X Z , ZENG S , et al. Regulation of the master regulator FOXM1 in cancer[J]. Cell Commun Signal, 2018, 16 (1): 57.
doi: 10.1186/s12964-018-0266-6 |
37 |
CHAKRABARTI R , HWANG J , BLANCO M A , et al. Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2[J]. Nat Cell Biol, 2012, 14 (11): 1212- 1222.
doi: 10.1038/ncb2607 |
[1] | 张颖, 宋春莲, 张莹, 沈鸿, 舒相华, 杨洪贵. 伪狂犬病病毒感染小鼠基质金属蛋白酶-9介导紧密连接蛋白损伤血脑屏障的研究[J]. 畜牧兽医学报, 2024, 55(5): 2186-2194. |
[2] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[3] | 李艺璇, 牛静轶, 李港, 万超, 方仁东, 叶超. 伪狂犬病病毒编码的内膜蛋白生物学功能研究进展[J]. 畜牧兽医学报, 2024, 55(3): 957-970. |
[4] | 高龙, 常心怡, 李程, 赵晓亚, 李汶洁, 范浩谦, 马静云. 表达外源基因SPAM1重组CAV-2溶瘤病毒的构建与拯救[J]. 畜牧兽医学报, 2024, 55(3): 1228-1237. |
[5] | 谭宁, 李巴仑, 韩苗, 李琛琛, 景远翔, 寇正, 李娜, 彭莎, 赵献军, 华进联. 米托蒽醌甲磺酸盐预处理脂肪间充质干细胞对犬糖尿病的治疗效果评价[J]. 畜牧兽医学报, 2024, 55(3): 1328-1344. |
[6] | 李春晓, 安尉, 高博泉, 王振龙, 韩冰, 陶慧, 王金全, 王秀敏. 猫犬主要过敏原蛋白的最新研究进展[J]. 畜牧兽医学报, 2024, 55(2): 471-480. |
[7] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[8] | 毕振威, 王文杰, 刘雅坤, 彭大新. 新的犬ANP32A的克隆及其在流感病毒跨物种感染中的作用[J]. 畜牧兽医学报, 2024, 55(2): 660-669. |
[9] | 郭云鹏, 牛顿, 李爽, 姜兴昊, 张立夏, 任桂萍, 尹杰超. 利用1型糖尿病小鼠模型分析犬成纤维生长因子21的长效降糖效果[J]. 畜牧兽医学报, 2024, 55(2): 770-784. |
[10] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[11] | 张德安, 杨若渚, 刘杰, 刘德武, 邓铭, 柳广斌, 孙宝丽, 郭勇庆, 李耀坤. 饲喂青贮黄梁木代替青贮玉米川中黑山羊肝转录组的表达分析[J]. 畜牧兽医学报, 2024, 55(1): 232-244. |
[12] | 陆江, 朱道仙, 卢劲晔, 刘莉, 郝福星, 吴植, 卢炜, 刘静. 高聚合度菊粉通过调节肠-脂肪组织轴改善高脂饮食诱导的犬肥胖[J]. 畜牧兽医学报, 2023, 54(9): 3941-3950. |
[13] | 石磊, 马裔寒, 袁占奎, 孙艺虹, 王虓, 张彬, 乔康佳. 胫骨平台水平化截骨术治疗犬前交叉韧带疾病的手术效果和并发症分析[J]. 畜牧兽医学报, 2023, 54(9): 3964-3976. |
[14] | 钟华, 宋杉杉, 邵浣婷, 赵瑜, 康劲文, 吴瑶, 苏仁伟. 犬子宫蓄脓组织的转录组学分析[J]. 畜牧兽医学报, 2023, 54(8): 3383-3392. |
[15] | 王建东, 唐玉林, 王敏, 张宝锁, 杨富强, 高海慧, 于洋, 郭延生. 基于RNA-Seq技术研究枸杞多糖对环磷酰胺致雏鸡免疫抑制的拮抗机制[J]. 畜牧兽医学报, 2023, 54(8): 3519-3532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||