1 |
KERTZ A F . Review: urea feeding to dairy cattle: a historical perspective and review[J]. Prof Anim Sci, 2010, 26 (3): 257- 272.
doi: 10.15232/S1080-7446(15)30593-3
|
2 |
HAILEMARIAM S , ZHAO S G , HE Y , et al. Urea transport and hydrolysis in the rumen: a review[J]. Anim Nutr, 2021, 7 (4): 989- 996.
doi: 10.1016/j.aninu.2021.07.002
|
3 |
刘思佳. 奶牛瘤胃中活性尿素分解菌群多样性分析[D]. 北京: 中国农业科学院, 2020.
|
|
LIU S J. Diversity analyze of active ureolytic bacterial community in the rumen of dairy cows[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
|
4 |
GETAHUN D , ALEMNEH T , AKEBEREGN D , et al. Urea metabolism and recycling in ruminants[J]. Biomed J Sci Tech Res, 2019, 20 (1): 14790- 14796.
|
5 |
SOUZA V C , AGUILAR M , VAN AMBURGH M , et al. Milk urea nitrogen variation explained by differences in urea transport into the gastrointestinal tract in lactating dairy cows[J]. J Dairy Sci, 2021, 104 (6): 6715- 6726.
doi: 10.3168/jds.2020-19787
|
6 |
WAGNER J J , ENGLE T E , BRYANT T C . The effect of rumen degradable and rumen undegradable intake protein on feedlot performance and carcass merit in heavy yearling steers[J]. J Anim Sci, 2010, 88 (3): 1073- 1081.
doi: 10.2527/jas.2009-2111
|
7 |
CECONI I , RUIZ-MORENO M J , DILORENZO N , et al. Effect of urea inclusion in diets containing corn dried distillers grains on feedlot cattle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine index[J]. J Anim Sci, 2015, 93 (1): 357- 369.
doi: 10.2527/jas.2014-8214
|
8 |
ZHAO S G , WANG J Q , ZHENG N , et al. Reducing microbial ureolytic activity in the rumen by immunization against urease therein[J]. BMC Vet Res, 2015, 11, 94.
doi: 10.1186/s12917-015-0409-6
|
9 |
ZHANG Z Y , LI M , ZHANG X Y , et al. A novel urease inhibitor of ruminal microbiota screened through molecular docking[J]. Int J Mol Sci, 2020, 21 (17): 6006.
doi: 10.3390/ijms21176006
|
10 |
HE Y , ZHANG X Y , LI M , et al. Coptisine: a natural plant inhibitor of ruminal bacterial urease screened by molecular docking[J]. Sci Total Environ, 2022, 808, 151946.
doi: 10.1016/j.scitotenv.2021.151946
|
11 |
GUTIERREZ-BAÑUELOS H , ANDERSON R C , CARSTENS G E , et al. Effects of nitroethane and monensin on ruminal fluid fermentation characteristics and nitrocompound-metabolizing bacterial populations[J]. J Agric Food Chem, 2008, 56 (12): 4650- 4658.
doi: 10.1021/jf800756c
|
12 |
PATRA A K , SAXENA J . Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations[J]. Antonie van Leeuwenhoek, 2009, 96 (4): 363- 375.
doi: 10.1007/s10482-009-9364-1
|
13 |
赵玉超, 余诗强, 蒋林树. 生物类黄酮调控瘤胃微生态系统的作用——聚焦甲烷减排[J]. 动物营养学报, 2022, 34 (9): 5452- 5465.
doi: 10.3969/j.issn.1006-267x.2022.09.002
|
|
ZHAO Y C , YU S Q , JIANG L S . Roles of bioflavonoids in regulating rumen microecosystems: focus on methane emission reduction[J]. Chinese Journal of Animal Nutrition, 2022, 34 (9): 5452- 5465.
doi: 10.3969/j.issn.1006-267x.2022.09.002
|
14 |
MA J , ZHENG Y M , TANG W J , et al. Dietary polyphenols in lipid metabolism: a role of gut microbiome[J]. Anim Nutr, 2020, 6 (4): 404- 409.
doi: 10.1016/j.aninu.2020.08.002
|
15 |
STEINSHAMN H . Effect of forage legumes on feed intake, milk production and milk quality-a review[J]. Anim Sci Pap Rep, 2010, 28 (3): 195- 206.
|
16 |
ZHAN J S , LIU M M , SU X S , et al. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows[J]. Asian-Australas J Anim Sci, 2017, 30 (10): 1416- 1424.
doi: 10.5713/ajas.16.0579
|
17 |
WEATHERBURN M W . Phenol-hypochlorite reaction for determination of ammonia[J]. Anal Chem, 1967, 39 (8): 971- 974.
doi: 10.1021/ac60252a045
|
18 |
JIN D , ZHAO S G , ZHENG N , et al. Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC gene classification[J]. Front Microbiol, 2017, 8, 385.
|
19 |
CALLAHAN B J , MCMURDIE P J , ROSEN M J , et al. DADA2:high-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13 (7): 581- 583.
doi: 10.1038/nmeth.3869
|
20 |
WANG Q , GARRITY G M , TIEDJE J M , et al. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73 (16): 5261- 5267.
doi: 10.1128/AEM.00062-07
|
21 |
JIN D , ZHAO S G , ZHENG N , et al. Urea metabolism and regulation by rumen bacterial urease in ruminants-a review[J]. Ann Anim Sci, 2018, 18 (2): 303- 318.
doi: 10.1515/aoas-2017-0028
|
22 |
WANG R , WANG M , UNGERFELD E M , et al. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet[J]. J Dairy Sci, 2018, 101 (11): 9789- 9799.
doi: 10.3168/jds.2018-14904
|
23 |
TROYER A F , STOEHR H , Willet M . Hays, great benefactor to plant breeding and the founder of our association[J]. J Hered, 2003, 94 (6): 435- 441.
doi: 10.1093/jhered/esg099
|
24 |
FLYTHE M , KAGAN I . Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii[J]. Curr Microbiol, 2010, 61 (2): 125- 131.
doi: 10.1007/s00284-010-9586-5
|
25 |
LIU S J , ZHANG Z Y , HAILEMARIAM S , et al. Biochanin A inhibits ruminal nitrogen-metabolizing bacteria and alleviates the decomposition of amino acids and urea in vitro[J]. Animals, 2020, 10 (3): 368.
doi: 10.3390/ani10030368
|
26 |
COLEMAN G S , SANDFORD D C . The uptake and utilization of bacteria, amino acids and nucleic acid components by the rumen ciliate eudiplodinium maggii[J]. J Appl Bacteriol, 1979, 47 (3): 409- 419.
doi: 10.1111/j.1365-2672.1979.tb01201.x
|
27 |
VANHATALO A , KUOPPALA K , AHVENJÄRVI S , et al. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows.1.Nitrogen metabolism and supply of amino acids[J]. J Dairy Sci, 2009, 92 (11): 5620- 5633.
doi: 10.3168/jds.2009-2249
|
28 |
CHOWDHURY M R , WILKINSON R G , SINCLAIR L A . Feeding lower-protein diets based on red clover and grass or alfalfa and corn silage does not affect milk production but improves nitrogen use efficiency in dairy cows[J]. J Dairy Sci, 2023, 106 (3): 1773- 1789.
doi: 10.3168/jds.2022-22607
|
29 |
BRODERICK G A . Utilization of protein in red clover and alfalfa silages by lactating dairy cows and growing lambs[J]. J Dairy Sci, 2018, 101 (2): 1190- 1205.
doi: 10.3168/jds.2017-13690
|
30 |
SALAMI S A , VALENTI B , LUCIANO G , et al. Dietary cardoon meal modulates rumen biohydrogenation and bacterial community in lambs[J]. Sci Rep, 2021, 11 (1): 16180.
doi: 10.1038/s41598-021-95691-3
|
31 |
DAO T K , DO T H , LE N G , et al. Understanding the role of Prevotella genus in the digestion of lignocellulose and other substrates in vietnamese native goats' rumen by metagenomic deep sequencing[J]. Animals, 2021, 11 (11): 3257.
doi: 10.3390/ani11113257
|
32 |
BETANCUR-MURILLO C L , AGUILAR-MARÍN S B , JOVEL J . Prevotella: a key player in ruminal metabolism[J]. Microorganisms, 2022, 11 (1): 1.
doi: 10.3390/microorganisms11010001
|
33 |
ACCETTO T , AVGUŠTIN G . The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: a factor in their ubiquity?[J]. Syst Appl Microbiol, 2019, 42 (2): 107- 116.
doi: 10.1016/j.syapm.2018.10.001
|
34 |
KOVATCHEVA-DATCHARY P , NILSSON A , AKRAMI R , et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella[J]. Cell Metab, 2015, 22 (6): 971- 982.
doi: 10.1016/j.cmet.2015.10.001
|
35 |
NATIVIDAD J M , LAMAS B , PHAM H P , et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice[J]. Nat Commun, 2018, 9 (1): 2802.
doi: 10.1038/s41467-018-05249-7
|
36 |
OLSON C A , IÑIGUEZ A J , YANG G E , et al. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia[J]. Cell Host Microbe, 2021, 29 (9): 1378- 1392.e6.
doi: 10.1016/j.chom.2021.07.004
|