畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1744-1754.doi: 10.11843/j.issn.0366-6964.2025.04.023
李聪1(), 苏江天1, 李一丹1, 王朝飞1, 于杰2, 雷初朝1, 党瑞华1,*(
)
收稿日期:
2024-10-08
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
党瑞华
E-mail:lc863749946@163.com;dangruihua@nwsuaf.edu.cn
作者简介:
李聪(1996-), 女, 河南鹤壁人, 博士, 主要从事动物遗传资源与育种研究, E-mail: lc863749946@163.com
基金资助:
LI Cong1(), SU Jiangtian1, LI Yidan1, WANG Zhaofei1, YU Jie2, LEI Chuzhao1, DANG Ruihua1,*(
)
Received:
2024-10-08
Online:
2025-04-23
Published:
2025-04-28
Contact:
DANG Ruihua
E-mail:lc863749946@163.com;dangruihua@nwsuaf.edu.cn
摘要:
旨在探究德州驴体尺性状的遗传基础,本研究采集2~3周岁的健康德州驴母驴血液作为试验材料,共139头。测定试验群体的体尺性状,并进行描述性统计分析。利用“家驴一号”40K液相芯片对全部个体进行基因分型。使用混合线性模型对11个体尺性状进行全基因组关联分析(genome-wide association study, GWAS),并对候选基因进行功能注释和通路富集分析。结合精细映射和连锁不平衡分析,识别体尺性状的潜在因果SNPs位点。通过GWAS鉴定到3个全基因组显著和20个潜在显著的SNPs位点以及41个候选基因与体尺性状显著关联。GO和KEGG富集分析结果表明,候选基因显著富集在与成骨分化、骨骼肌发育和脂质代谢相关的生物学过程。综合精细映射和连锁不平衡分析,在16号染色体候选区域内检测到4个显著SNPs位点存在强连锁不平衡。本研究结果为德州驴体尺性状遗传机制的解析奠定了基础,为分子标记辅助选择在驴育种工作中的应用提供了参考依据。
中图分类号:
李聪, 苏江天, 李一丹, 王朝飞, 于杰, 雷初朝, 党瑞华. 德州驴体尺性状的全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(4): 1744-1754.
LI Cong, SU Jiangtian, LI Yidan, WANG Zhaofei, YU Jie, LEI Chuzhao, DANG Ruihua. Genome-wide Association Study of Body Traits in Dezhou Donkey[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1744-1754.
表 1
德州驴体尺性状统计"
性状 Trait | 最大值 Max | 最小值 Min | 平均值±标准差 Mean±SD | 变异系数/% CV |
体长/cm Body length | 155.00 | 118.00 | 132.17±6.86 | 5.19 |
体高/cm Withers height | 151.00 | 117.00 | 138.04±6.19 | 4.49 |
头长/cm Head length | 64.00 | 44.00 | 55.11±3.30 | 5.99 |
颈长/cm Neck length | 82.00 | 55.00 | 69.45±4.83 | 6.96 |
胸围/cm Chest circumference | 179.00 | 133.00 | 157.11±7.06 | 4.50 |
胸宽/cm Chest width | 53.00 | 32.00 | 42.10±3.47 | 8.25 |
胸深/cm Chest depth | 67.00 | 48.00 | 58.12±3.93 | 6.76 |
尻长/cm Hip length | 49.00 | 35.00 | 40.45±2.51 | 6.19 |
尻宽/cm Hip width | 52.00 | 36.00 | 43.64±2.90 | 6.65 |
尻高/cm Hip height | 152.00 | 118.00 | 139.43±6.12 | 4.39 |
管围/cm Cannon circumference | 21.00 | 13.00 | 15.74±1.35 | 8.55 |
表 2
体尺性状显著关联的SNPs位点"
性状 Trait | 位点 SNP | P值 P-value | 基因 Gene |
体长 Body length | 21:91 503 240 | 3.14×10-7 | ATG7, SYN2, PPARG |
20:21 286 387 | 2.07×10-5 | BARX2 | |
体高 Withers height | 24:23 343 731 | 1.60×10-6 | ASCC3, SIM1 |
头长 Head length | 6:72 093 776 | 8.14×10-6 | CTNNA2 |
29:35 886 892 | 1.44×10-5 | GJD4 | |
2:46 901 188 | 1.85×10-5 | ADGRA1, CFAP46, KNDC1 | |
14:15 884 941 | 1.98×10-5 | CLEC16A, CIITA, SOCS1 | |
颈长 Neck length | 4:83 924 683 | 2.54×10-6 | TSN, NIFK |
4:84 006 403 | 1.97×10-5 | ||
胸宽 Chest width | 16:45 878 080 | 8.85×10-7 | PDE4B, LEPR |
胸深 Chest depth | 16:29 057 786 | 1.90×10-6 | COL24A1, CCN1, ZNHIT6, SYDE2, DNAI3 |
16:29 189 524 | 5.06×10-6 | ||
16:29 121 493 | 1.22×10-5 | ||
16:28 935 452 | 2.10×10-5 | ||
11:58 626 672 | 1.08×10-5 | Not found | |
尻长 Hip length | 16:33 634 323 | 5.65×10-7 | Not found |
22:10 131 560 | 9.98×10-6 | LRIG3, SLC16A7 | |
27:8 494 369 | 1.61×10-5 | VEGFC | |
尻宽 Hip width | 1:68 845 784 | 1.88×10-6 | ZNF804B, STEAP1, TEX47 |
5:38 279 154 | 8.46×10-6 | PIK3R3, MAST2 | |
管围 | 7:94 911 085 | 4.86×10-6 | PIK3C3 |
Cannon circumference | 13:4 356 242 | 5.87×10-6 | NT5M, PEMT, FLCN, MPRIP, COPS3 |
13:5 440 529 | 7.80×10-6 | FAM83G, GRAP, EPN2, MFAP4 |
表 3
候选区域的精细映射分析"
性状 Trait | 候选区域 Candidate region | 位点 SNP | 后验概率 Posterior probability |
体长 Body length | 20: 20 793 098-21 758 076 | 20:21 286 387 | 0.999 |
20:21 467 517 | 0.889 | ||
21: 91 046 592-91 929 365 | 21:91 503 240 | 0.999 | |
21:91 224 217 | 0.476 | ||
体高 Withers height | 24: 22 855 789-23 775 288 | 24:23 595 950 | 1.000 |
24:23 690 180 | 1.000 | ||
24:23 343 731 | 1.000 | ||
24:22 920 106 | 0.554 | ||
头长 Head length | 6: 71 605 039-72 542 551 | 6:72 093 776 | 0.936 |
6:72 179 511 | 0.352 | ||
29: 35 388 388-36 370 323 | 29:35 886 892 | 0.999 | |
29:36 370 323 | 0.993 | ||
29:36 314 803 | 0.991 | ||
2: 46 439 788-47 286 995 | 2:46 901 188 | 0.962 | |
14: 15 390 407-16 379 240 | 14:15 884 941 | 0.991 | |
14:15 390 407 | 0.846 | ||
颈长 Neck length | 4: 83 666 925-84 489 543 | 4:83 924 683 | 1.000 |
4:84 006 403 | 1.000 | ||
4:84 489 543 | 0.523 | ||
胸宽 Chest width | 16: 45 379 140-46 335 855 | 16:45 878 080 | 0.999 |
16:45 863 712 | 0.430 | ||
胸深 Chest depth | 11: 58 128 302-59 098 496 | 11:58 626 672 | 0.994 |
11:58 295 507 | 0.809 | ||
16: 28 622 350-29 616 040 | 16:29 057 786 | 0.494 | |
16:28 622 350 | 0.297 | ||
尻长 Hip length | 16: 33 143 130-34 132 572 | 16:33 634 323 | 0.999 |
16:34 083 160 | 0.996 | ||
16:33 853 810 | 0.399 | ||
22: 9 664 581-10 553 415 | 22:10 131 560 | 0.974 | |
27: 8 024 389-8 978 857 | 27:8 494 369 | 0.968 | |
尻宽 Hip width | 1: 68 361 851-69 298 764 | 1:68 845 784 | 1.000 |
1:68 640 878 | 0.999 | ||
1:68 583 033 | 0.972 | ||
1:68 746 075 | 0.869 | ||
5: 37 815 051-38 776 904 | 5:38 279 154 | 0.994 | |
5:38 647 887 | 0.372 | ||
管围 | 7: 94 456 782-95 388 036 | 7:94 911 085 | 0.989 |
Cannon circumference | 13: 3 862 146-4 807 467 | 13:4 356 242 | 0.983 |
13: 4 956 846-5 919 064 | 13:5 440 529 | 0.998 | |
13:5 830 048 | 0.579 | ||
13:5 029 534 | 0.613 |
1 |
SEYITI S , KELIMU A . Donkey industry in China: Current aspects, suggestions and future challenges[J]. J Equine Vet Sci, 2021, 102, 103642.
doi: 10.1016/j.jevs.2021.103642 |
2 |
SOUROULLAS K , ASPRI M , PAPADEMAS P . Donkey milk as a supplement in infant formula: Benefits and technological challenges[J]. Food Res Int, 2018, 109, 416- 425.
doi: 10.1016/j.foodres.2018.04.051 |
3 |
LI Y , FAN Y , SHAIKH A S , et al. Dezhou donkey (Equus asinus) milk a potential treatment strategy for type 2 diabetes[J]. J Ethnopharmacol, 2020, 246, 112221.
doi: 10.1016/j.jep.2019.112221 |
4 |
BENNETT R , PFUDERER S . The potential for new donkey farming systems to supply the growing demand for hides[J]. Animals, 2020, 10 (4): 718.
doi: 10.3390/ani10040718 |
5 | 李聪, 刘书琴, 高峰, 等. 家驴40K液相芯片开发及其初步应用[J]. 畜牧兽医学报, 2024, 55 (12): 5538- 5548. |
LI C , LIU S Q , GAO F , et al. Development and preliminary application of domestic donkey 40K liquid chip[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5538- 5548. | |
6 |
LI C , DUAN D D , XUE Y H , et al. An association study on imputed whole-genome resequencing from high-throughput sequencing data for body traits in crossbred pigs[J]. Anim Genet, 2022, 53 (2): 212- 219.
doi: 10.1111/age.13170 |
7 |
WANG M , LI H , ZHANG X , et al. An analysis of skin thickness in the Dezhou donkey population and identification of candidate genes by RNA-seq[J]. Anim Genet, 2022, 53 (3): 368- 379.
doi: 10.1111/age.13196 |
8 |
LAI Z , WU F , LI M , et al. Tissue expression profile, polymorphism of IGF1 gene and its effect on body size traits of Dezhou donkey[J]. Gene, 2021, 766, 145118.
doi: 10.1016/j.gene.2020.145118 |
9 | 侯浩宾, 李海静, 杨莉, 等. 德州驴NCAPG-DCAF16基因区域多态性与生长性状的关联分析[J]. 畜牧兽医学报, 2019, 50 (2): 302- 313. |
HOU H B , LI H J , YANG L , et al. Association between NCAPG-DCAF16 region polymorphisms and growth traits in dezhou donkeys[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 302- 313. | |
10 |
WANG F , WANG G , DALIELIHAN B , et al. A novel 31bp deletion within the CDKL5 gene is significantly associated with growth traits in Dezhou donkey[J]. Anim Biotechnol, 2023, 34 (3): 503- 507.
doi: 10.1080/10495398.2021.1977653 |
11 |
WANG G , LI M , ZHOU J , et al. A novel A>G polymorphism in the intron 2 of TBX3 gene is significantly associated with body size in donkeys[J]. Gene, 2021, 785, 145602.
doi: 10.1016/j.gene.2021.145602 |
12 |
WANG T , SHI X , LIU Z , et al. A Novel A>G Polymorphism in the Intron 1 of LCORL Gene Is Significantly Associated with Hide Weight and Body Size in Dezhou Donkey[J]. Animals, 2022, 12 (19): 2581.
doi: 10.3390/ani12192581 |
13 | CHANG C C , CHOW C C , TELLIER L C , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4 (1): 7. |
14 |
ZHOU X , STEPHENS M . Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44 (7): 821- 824.
doi: 10.1038/ng.2310 |
15 |
WANG K , LI M , HAKONARSON H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38 (16): e164.
doi: 10.1093/nar/gkq603 |
16 | BU D , LUO H , HUO P , et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Res, 2021, 49 (1): 317- 325. |
17 |
BENNER C , SPENCER C C , HAVULINNA A S , et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies[J]. Bioinformatics, 2016, 32 (10): 1493- 1501.
doi: 10.1093/bioinformatics/btw018 |
18 |
DONG S S , HE W M , JI J J , et al. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files[J]. Brief Bioinform, 2021, 22 (4): bbaa227.
doi: 10.1093/bib/bbaa227 |
19 | 刘玲玲, 孟军, 王琼, 等. 马体尺性状的全基因组关联分析[J]. 农业生物技术学报, 2020, 28 (11): 1994- 2001. |
LIU L L , MENG J , WANG Q , et al. Genome-wide Association Study of Morphometric Traits in Horse (Equus caballus)[J]. Journal of Agricultural Biotechnology, 2020, 28 (11): 1994- 2001. | |
20 |
LIU L L , CHEN B , CHEN S L , et al. A genome-wide association study of the chest circumference trait in Xinjiang donkeys based on whole-genome sequencing technology[J]. Genes, 2023, 14 (5): 1081.
doi: 10.3390/genes14051081 |
21 |
SONG S , WANG S , LI N , et al. Genome-wide association study to identify SNPs and candidate genes associated with body size traits in donkeys[J]. Front Genet, 2023, 14, 1112377.
doi: 10.3389/fgene.2023.1112377 |
22 |
MENG X H , CHEN X D , GREENBAUM J , et al. Integration of summary data from GWAS and eQTL studies identified novel causal BMD genes with functional predictions[J]. Bone, 2018, 113, 41- 48.
doi: 10.1016/j.bone.2018.05.012 |
23 |
BAROI S , CZERNIK P J , CHOUGULE A , et al. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss[J]. Bone, 2021, 147, 115913.
doi: 10.1016/j.bone.2021.115913 |
24 |
ZHANG J , ZHANG T , TANG B , et al. The miR-187 induced bone reconstruction and healing in a mouse model of osteoporosis, and accelerated osteoblastic differentiation of human multipotent stromal cells by targeting BARX2[J]. Pathol Res Pract, 2021, 219, 153340.
doi: 10.1016/j.prp.2021.153340 |
25 |
CHAWLA A , BOISVERT W A , LEE C H , et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis[J]. Mol Cell, 2001, 7 (1): 161- 171.
doi: 10.1016/S1097-2765(01)00164-2 |
26 |
LI C , DUAN D D , XUE Y H , et al. An association study on imputed whole-genome resequencing from high-throughput sequencing data for body traits in crossbred pigs[J]. Anim Genet, 2022, 53 (2): 212- 219.
doi: 10.1111/age.13170 |
27 |
MEUNIER J , VILLAR-QUILES R N , DUBAND-GOULET I , et al. Inherited defects of the ASC-1 complex in congenital neuromuscular diseases[J]. Int J Mol Sci, 2021, 22 (11): 6039.
doi: 10.3390/ijms22116039 |
28 |
YAMADA Y , SAKUMA J , TAKEUCHI I , et al. Identification of rs7350481 at chromosome 11q23.3 as a novel susceptibility locus for metabolic syndrome in Japanese individuals by an exome-wide association study[J]. Oncotarget, 2017, 8 (24): 39296- 39308.
doi: 10.18632/oncotarget.16945 |
29 |
WANG W , LIU Y , HAO J , et al. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis[J]. Gene, 2016, 591 (1): 43- 47.
doi: 10.1016/j.gene.2016.06.058 |
30 |
WANG W T , HUANG Z P , SUI S , et al. microRNA-1236 promotes chondrocyte apoptosis in osteoarthritis via direct suppression of PIK3R3[J]. Life Sci, 2020, 253, 117694.
doi: 10.1016/j.lfs.2020.117694 |
31 |
KOMINAKIS A , TARSANI E , HAGER-THEODORIDES A L , et al. Genetic differentiation of mainland-island sheep of Greece: Implications for identifying candidate genes for long-term local adaptation[J]. PLoS One, 2021, 16 (9): e0257461.
doi: 10.1371/journal.pone.0257461 |
32 |
CAI D , WANG Z , ZHOU Z , et al. Integration of transcriptome sequencing and whole genome resequencing reveal candidate genes in egg production of upright and pendulous-comb chickens[J]. Poult Sci, 2023, 102 (4): 102504.
doi: 10.1016/j.psj.2023.102504 |
33 |
MULLIN B H , TICKNER J , ZHU K , et al. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts[J]. Genome Biol, 2020, 21 (1): 80.
doi: 10.1186/s13059-020-01997-2 |
34 |
TAYLOR S E , LEE J , SMERIGLIO P , et al. Identification of human juvenile chondrocyte-specific factors that stimulate stem cell growth[J]. Tissue Eng Part A, 2016, 22 (7-8): 645- 653.
doi: 10.1089/ten.tea.2015.0366 |
35 |
LIU H , HE J , BAGHERI-YARMAND R , et al. Osteocyte CⅡTA aggravates osteolytic bone lesions in myeloma[J]. Nat Commun, 2022, 13 (1): 3684.
doi: 10.1038/s41467-022-31356-7 |
36 |
JENSEN V F , SWANBERG M , HERLIN M , et al. Differential expression of the inflammatory ciita gene may be accompanied by altered bone properties in intact sex steroid-deficient female rats[J]. BMC Res Notes, 2023, 16 (1): 372.
doi: 10.1186/s13104-023-06543-4 |
37 |
ABOUSOLIMAN I , REYER H , OSTER M , et al. Genome-wide analysis for early growth-related traits of the locally adapted egyptian Barki sheep[J]. Genes, 2021, 12 (8): 1243.
doi: 10.3390/genes12081243 |
38 |
ZHANG C , XIAO D , SHU L , et al. Single-cell RNA sequencing uncovers cellular heterogeneity and the progression of heterotopic ossification of the elbow[J]. Front Pharmacol, 2024, 15, 1434146.
doi: 10.3389/fphar.2024.1434146 |
39 |
YU Y , OH S Y , KIM H Y , et al. Valproic acid-induced CCN1 promotes osteogenic differentiation by increasing CCN1 protein stability through HDAC1 inhibition in tonsil-derived mesenchymal stem cells[J]. Cells, 2022, 11 (3): 534.
doi: 10.3390/cells11030534 |
40 |
ZHAO G , KIM E W , JIANG J , et al. CCN1/Cyr61 Is Required in osteoblasts for responsiveness to the anabolic activity of PTH[J]. J Bone and Miner Res, 2020, 35 (11): 2289- 2300.
doi: 10.1002/jbmr.4128 |
41 |
MACÉ T , GONZÁLEZ-GARCÍA E , FOULQUIÉ D , et al. Genome-wide analyses reveal a strong association between LEPR gene variants and body fat reserves in ewes[J]. BMC Genomics, 2022, 23 (1): 412.
doi: 10.1186/s12864-022-08636-z |
42 |
ÓVILO C , TRAKOOLJUL N , NÚÑEZ Y , et al. SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs[J]. Sci Rep, 2022, 12 (1): 16361.
doi: 10.1038/s41598-022-20817-0 |
43 |
ANGEL S P , BAGATH M , SEJIAN V , et al. Expression patterns of candidate genes reflecting the growth performance of goats subjected to heat stress[J]. Mol Biol Rep, 2018, 45 (6): 2847- 2856.
doi: 10.1007/s11033-018-4440-0 |
44 |
EL-TARABANY M S , SALEH A A , EL-ARABY I E , et al. Association of LEPR polymorphisms with egg production and growth performance in female Japanese quails[J]. Anim Biotechnol, 2022, 33 (4): 599- 611.
doi: 10.1080/10495398.2020.1812617 |
45 |
WANG X , ZHAO Y , BAI J . Research note: Association of LEPR gene polymorphism with growth and carcass traits in Savimalt and French Giant meat-type quails[J]. Poult Sci, 2023, 102 (12): 103047.
doi: 10.1016/j.psj.2023.103047 |
46 |
LI H , ZHOU W , SUN S , et al. Microfibrillar-associated protein 5 regulates osteogenic differentiation by modulating the Wnt/β-catenin and AMPK signaling pathways[J]. Mol Med, 2021, 27 (1): 153.
doi: 10.1186/s10020-021-00413-0 |
47 |
NISHIHARA S , IKEDA M , OZAWA H , et al. Role of cAMP in phenotypic changes of osteoblasts[J]. Biochem Bioph Res Co, 2018, 495 (1): 941- 946.
doi: 10.1016/j.bbrc.2017.11.125 |
48 | ZHANG H , JIANG C , LI M , et al. CXCR4 enhances invasion and proliferation of bone marrow stem cells via PI3K/AKT/NF-κB signaling pathway[J]. Int J Clin Exp Pathol, 2017, 10 (9): 9829- 9836. |
49 |
ULICI V , HOENSELAAR K D , GILLESPIE J R , et al. The PI3K pathway regulates endochondral bone growth through control of hypertrophic chondrocyte differentiation[J]. BMC Dev Biol, 2008, 8, 40.
doi: 10.1186/1471-213X-8-40 |
[1] | 黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109. |
[2] | 杨苗苗, 谢莉, 简宝怡, 罗超维, 谢卓君, 朱飘, 周天日, 李华, 向海. 利用机器学习构建和优化早期体尺性状对成年母鸡腹脂沉积的预测模型[J]. 畜牧兽医学报, 2025, 56(2): 548-558. |
[3] | 黄红艳, 张力允, 黄智荣, 伍仲平, 张续勐, 欧阳宏佳, 陈俊鹏, 林桢平, 田允波, 李秀金, 黄运茂. 狮头鹅群体遗传多样性和体重体尺全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(9): 3914-3924. |
[4] | 张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900. |
[5] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[6] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[7] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[8] | 林晓坤, 都萌萌, 周李生, 黄振刚, 王頔, 周东辉, 曹欣欣, 贺建宁, 赵金山, 李和刚. 敖汉细毛羊羊毛经济性状的全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(10): 4346-4359. |
[9] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
[10] | 李柯安宁, 杜丽丽, 安炳星, 邓天宇, 梁忙, 曹晟, 杜悦莹, 徐凌洋, 高雪, 张路培, 李俊雅, 高会江. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676. |
[11] | 张笑科, 廖伟莉, 陈信佑, 李婷婷, 袁晓龙, 李加琪, 黄翔, 张豪. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54(5): 1868-1876. |
[12] | 吴骏, 蔡晓钿, 林清, 钟展明, 叶浩强, 魏趁, 徐志婷, 吴细波, 司景磊, 张哲, 李加琪. 大白猪眼肌面积、估计瘦肉率和背膘厚的加权一步法全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(4): 1403-1414. |
[13] | 张高猛, 丁纪强, 刘昱宏, 郑麦青, 文杰, 赵桂苹, 李庆贺. 全基因组关联分析揭示白羽肉鸡孵化性状的遗传基础[J]. 畜牧兽医学报, 2023, 54(2): 534-544. |
[14] | 范晨宇, 单艳菊, 章明, 姬改革, 巨晓军, 屠云洁, 贺喜, 束婧婷, 刘一帆, 张海涵. 立华麻黄鸡体重和肉品质性状全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(12): 4982-4992. |
[15] | 何志成, 秦晓晨, 吕永强, 李秀金, 边会龙, 罗军, 李聪. 萨能奶山羊体尺性状的多元逐步回归分析与生长曲线拟合[J]. 畜牧兽医学报, 2023, 54(12): 5301-5311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||