畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1731-1743.doi: 10.11843/j.issn.0366-6964.2025.04.022
收稿日期:
2024-05-27
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
高晨,李俊雅
E-mail:wxzhao9927@163.com;gaochen@caas.cn;Lijunya@caas.cn
作者简介:
赵文轩(1999-), 男, 北京人, 硕士, 主要从事大型哺乳动物干细胞的研究, E-mail: wxzhao9927@163.com
基金资助:
ZHAO Wenxuan(), GAO Xue, YU Dawei, GAO Chen*(
), LI Junya*(
)
Received:
2024-05-27
Online:
2025-04-23
Published:
2025-04-28
Contact:
GAO Chen, LI Junya
E-mail:wxzhao9927@163.com;gaochen@caas.cn;Lijunya@caas.cn
摘要:
旨在建立稳定传代并符合多能性标准的蒙山牛诱导多能干细胞。本研究首先用酶消化法建立了成年蒙山牛公牛耳缘成纤维细胞,并进行细胞存活率、生长曲线测定。同时采用了基于DOX调控的非病毒重编程外源基因表达系统,使用在3i/LIF和NBFR培养体系诱导蒙山牛成纤维细胞重编程,并对获得的蒙山牛诱导多能干细胞进行多能性检测。结果表明,本研究获得的蒙山牛耳缘成纤维细胞增殖正常、状态良好,蒙山牛诱导多能干细胞克隆形态呈现边界圆滑的圆顶型、碱性磷酸酶表达呈阳性、标志多能性基因表达显著高于成纤维细胞(P < 0.001),OCT4、SOX2、NANOG多能性蛋白的免疫荧光染色呈阳性,展现出与之前研究中报道的牛胚胎干细胞和诱导多能干细胞相似的多能性状态。这一成果为牛诱导多能干细胞的研究和应用提供了新的方向,并有助于进一步探索其在农业生物技术领域中的潜力。为体外配子生产进而复原濒危、灭绝的牛地方品种提供了材料基础。
中图分类号:
赵文轩, 高雪, 余大为, 高晨, 李俊雅. 蒙山牛诱导多能干细胞的建立[J]. 畜牧兽医学报, 2025, 56(4): 1731-1743.
ZHAO Wenxuan, GAO Xue, YU Dawei, GAO Chen, LI Junya. Establishment and Pluripotency Analysis of Induced Pluripotent Stem Cells from Mengshan Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1731-1743.
表 1
引物序列表"
基因 Gene | 上游引物(5′→3′) Upstream primer | 下游引物(5′→3′) Downstream primer |
GAPDH | CCTGCCCGTTCGACAGATA | GGCGACGATGTCCACTTTG |
OCT4 | AACGAGAATCTGCAGGAGATATG | TCTCACTCGGTTCTCGATACT |
KLF4 | TCAGGAGACACAAGGAAACCA | CCCCTTGGCGTTTTGTAAGT |
SOX2 | CATTAACGGCACACTGCCCC | TGAAAATGTCTCCCCCGCCC |
NANOG | CAGCTACAAGCAGGTGAAGA | CTATTCCTCGGCCAGTTGTT |
1 | 刘建明. 山东地方优良品种——蒙山牛[J]. 养殖技术顾问, 2004 (10): 11. |
LIU J M . Excellent local breed in Shandong—Mengshan cattle[J]. Breeding Technology Consultant, 2004 (10): 11. | |
2 | 李发兰. 蒙阴县蒙山牛的情况调研[J]. 中国畜禽种业, 2011, 7 (8): 14. |
LI F L . Survey on the situation of Mengshan cattle in Mengyin County[J]. China Livestock and Poultry Breeding, 2011, 7 (8): 14. | |
3 | 王秀英. 蒙山牛品种资源现状及开发利用建议[J]. 山东畜牧兽医, 2024, 45 (2): 45- 48. |
WANG X Y . Current status of Mengshan cattle breed resources and suggestions for development and utilization[J]. Shandong Animal Husbandry and Veterinary, 2024, 45 (2): 45- 48. | |
4 | 李鑫, 王加强, 周琪. 体细胞重编程研究进展[J]. 中国科学: 生命科学, 2016, 46 (1): 4- 15. |
LI X , WANG J Q , ZHOU Q . Review of somatic cell reprogramming[J]. Sci Sin Vitae, 2016, 46 (1): 4- 15. | |
5 |
TAKAHASHI K , YAMANAKA S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126 (4): 663- 676.
doi: 10.1016/j.cell.2006.07.024 |
6 |
TAKAHASHI K , OKITA K , NAKAGAWA M , et al. Induction of pluripotent stem cells from fibroblast cultures[J]. Nat Protoc, 2007, 2 (12): 3081- 3089.
doi: 10.1038/nprot.2007.418 |
7 |
OHNUKI M , TAKAHASHI K . Present and future challenges of induced pluripotent stem cells[J]. Philos Trans R Soc Lond B Biol Sci, 2015, 370 (1680): 20140367.
doi: 10.1098/rstb.2014.0367 |
8 |
TAKAHASHI K , TANABE K , OHNUKI M , et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131 (5): 861- 872.
doi: 10.1016/j.cell.2007.11.019 |
9 |
SUMER H , LIU J , MALAVER-ORTEGA L F , et al. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts[J]. J Anim Sci, 2011, 89 (9): 2708- 2716.
doi: 10.2527/jas.2010-3666 |
10 |
BAI C , LI X , GAO Y , et al. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells[J]. J Pineal Res, 2016, 61 (2): 154- 167.
doi: 10.1111/jpi.12334 |
11 |
CANIZO J R , VAZQUEZ ECHEGARAY C , KLISCH D , et al. Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system[J]. BMC Res Notes, 2018, 11 (1): 509.
doi: 10.1186/s13104-018-3627-8 |
12 |
CAO H , YANG P , PU Y , et al. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins[J]. Int J Biol Sci, 2012, 8 (4): 498- 511.
doi: 10.7150/ijbs.3723 |
13 |
CRAVERO D , MARTIGNANI E , MIRETTI S , et al. Generation of induced pluripotent stem cells from bovine epithelial cells and partial redirection toward a mammary phenotype in vitro[J]. Cell Reprogram, 2015, 17 (3): 211- 220.
doi: 10.1089/cell.2014.0087 |
14 |
HEO Y T , QUAN X , XU Y N , et al. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells[J]. Stem Cells Dev, 2015, 24 (3): 393- 402.
doi: 10.1089/scd.2014.0278 |
15 |
HAN X , HAN J , DING F , et al. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells[J]. Cell Res, 2011, 21 (10): 1509- 1512.
doi: 10.1038/cr.2011.125 |
16 |
DENG Y , LIU Q , LUO C , et al. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors[J]. Stem Cells Dev, 2012, 21 (13): 2485- 2494.
doi: 10.1089/scd.2012.0018 |
17 |
ZHAO L , WANG Z , ZHANG J , et al. Characterization of the single-cell derived bovine induced pluripotent stem cells[J]. Tissue Cell, 2017, 49 (5): 521- 527.
doi: 10.1016/j.tice.2017.05.005 |
18 | KAWAGUCHI T , TSUKIYAMA T , KIMURA K , et al. Generation of Naïve bovine induced pluripotent stem cells using piggybac transposition of doxycycline-inducible transcription factors[J]. PLoS One, 2015, 10 (8): 0135403. |
19 |
WANG S W , WANG S S , WU D C , et al. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters[J]. Cell Death Dis, 2013, 4 (11): 907.
doi: 10.1038/cddis.2013.420 |
20 |
LIN Y C , KUO K K , WUPUTRA K , et al. Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate[J]. Int J Mol Sci, 2014, 15 (3): 5011- 5031.
doi: 10.3390/ijms15035011 |
21 |
SU Y , WANG L , FAN Z , et al. Establishment of bovine-induced pluripotent stem cells[J]. Int J Mol Sci, 2021, 22 (19): 10489.
doi: 10.3390/ijms221910489 |
22 | KAWAGUCHI T , CHO D , HAYASHI M , et al. Derivation of induced trophoblast cell lines in cattle by doxycycline-inducible piggyBac vectors[J]. PLoS One, 2016, 11 (12): 0167550. |
23 |
TALBOT N C , SPARKS W O , PHILLIPS C E , et al. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors[J]. Mol Reprod Dev, 2017, 84 (6): 468- 485.
doi: 10.1002/mrd.22797 |
24 |
PILLAI V V , KEI T G , REDDY S E , et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance[J]. Anim Sci J, 2019, 90 (9): 1149- 1160.
doi: 10.1111/asj.13272 |
25 |
TALLURI T R , KUMAR D , GLAGE S , et al. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming[J]. Cell Reprogram, 2015, 17 (2): 131- 140.
doi: 10.1089/cell.2014.0080 |
26 |
DU X , FENG T , YU D , et al. Barriers for deriving transgene-free pig iPS cells with episomal vectors[J]. Stem Cells, 2015, 33 (11): 3228- 3238.
doi: 10.1002/stem.2089 |
27 |
MA K , SONG G , AN X , et al. miRNAs promote generation of porcine-induced pluripotent stem cells[J]. Mol Cell Biochem, 2014, 389 (1-2): 209- 218.
doi: 10.1007/s11010-013-1942-x |
28 |
ZYWITZA V , RUSHA E , SHAPOSHNIKOV D , et al. Naïve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction[J]. Sci Rep, 2022, 12 (1): 3100.
doi: 10.1038/s41598-022-07059-w |
29 | HAYASHI M , ZYWITZA V , NAITOU Y , et al. Robust induction of primordial germ cells of white rhinoceros on the brink of extinction[J]. Sci Adv, 2022, 8 (49): 9683. |
30 | KORODY M L , FORD S M , NGUYEN T D , et al. Rewinding Extinction in the Northern White Rhinoceros: Genetically Diverse Induced Pluripotent Stem Cell Bank for Genetic Rescue[J]. Stem Cells Dev, 2021, 30 (4): 177- 189. |
31 | SELVARAJ V , WILDT D E , PUKAZHENTHI B S . Induced pluripotent stem cells for conserving endangered species?[J]. Nat Methods, 2011, 8 (10): 805- 807. |
32 | WU Y , WANG C , FAN X , et al. The impact of induced pluripotent stem cells in animal conservation[J]. Vet Res Commun, 2024, 48 (2): 649- 663. |
33 | BEN-NUN I F , MONTAGUE S C , HOUCK M L , et al. Induced pluripotent stem cells from highly endangered species[J]. Nat Methods, 2011, 8 (10): 829- 831. |
34 | WU S , WU Y , ZHANG X , et al. Efficient germ-line transmission obtained with transgene-free induced pluripotent stem cells[J]. Proc Natl Acad Sci U S A, 2014, 111 (29): 10678- 10683. |
35 | SOTO D A , NAVARRO M , ZHENG C , et al. Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells[J]. Sci Rep, 2021, 11 (1): 11045. |
36 | ZHOU M , ZHANG M , GUO T , et al. Species origin of exogenous transcription factors affects the activation of endogenous pluripotency markers and signaling pathways of porcine induced pluripotent stem cells[J]. Front Cell Dev Biol, 2023, 11, 1196273. |
37 | DE MIGUEL M P , FUENTES-JULIÁN S , ALCAINA Y . Pluripotent stem cells: origin, maintenance and induction[J]. Stem Cell Rev Rep, 2010, 6 (4): 633- 649. |
38 | FURUSAWA T , OHKOSHI K , KIMURA K , et al. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses[J]. Biol Reprod, 2013, 89 (2): 28. |
39 | VERMA V , HUANG B , KALLINGAPPA P K , et al. Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines[J]. Stem Cells Dev, 2013, 22 (11): 1728- 1742. |
40 | ZHI M , ZHANG J , TANG Q , et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines[J]. Cell Res, 2022, 32 (4): 383- 400. |
41 | ALBERIO R , CROXALL N , ALLEGRUCCI C . Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal[J]. Stem Cells Dev, 2010, 19 (10): 1627- 1636. |
42 | BAEK S K , JEON S B , SEO B G , et al. The presence or absence of alkaline phosphatase activity to discriminate pluripotency characteristics in porcine epiblast stem cell-like cells[J]. Cell Reprogram, 2021, 23 (4): 221- 238. |
[1] | 王佳美, 黄永震, 高晨, 李俊良, 陈燕, 朱波, 张路培, 王泽昭, 高会江, 李俊雅, 高雪. 多能性干细胞概述及其在家畜上的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1473-1483. |
[2] | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54(10): 4003-4015. |
[3] | 张迎冰, 于芮峦, 乔培培, 杨莹, 张涌, 苏建民. CAF-1在体细胞重编程中的作用机制[J]. 畜牧兽医学报, 2021, 52(7): 1769-1777. |
[4] | 张伟, 张少鹏, 李恩宏, 曹安, 刘志宇, 韩建永, 曹素英. 过表达Gata6诱导分离猪胚外内胚层干细胞样细胞[J]. 畜牧兽医学报, 2017, 48(12): 2314-2322. |
[5] | 杜卫华,范宗兴,王皓宇,郝海生,刘岩,赵学明,秦彤,朱化彬. 爪蟾卵母细胞抽提物可诱导牛胎儿成纤维细胞发生部分重编程[J]. 畜牧兽医学报, 2015, 46(9): 1549-1556. |
[6] | 崔莉莎,赵学明,郝海生,杜卫华,马友记,朱化彬,王宗礼. 牛囊胚ICM克隆多能性标记基因与表面标记的研究[J]. 畜牧兽医学报, 2015, 46(7): 1141-1149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||