畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4346-4359.doi: 10.11843/j.issn.0366-6964.2024.10.010
林晓坤(), 都萌萌, 周李生, 黄振刚, 王頔, 周东辉, 曹欣欣, 贺建宁, 赵金山*(
), 李和刚*(
)
收稿日期:
2024-04-15
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
赵金山,李和刚
E-mail:243252756@qq.com;201501005@qau.edu.cn;201701018@qau.edu.cn
作者简介:
林晓坤(1999-), 男, 山东烟台人, 硕士, 主要从事动物遗传育种与繁殖研究, E-mail: 243252756@qq.com
基金资助:
Xiaokun LIN(), Mengmeng DU, Lisheng ZHOU, Zhengang HUANG, Di WANG, Donghui ZHOU, Xinxin CAO, Jianning HE, Jinshan ZHAO*(
), Hegang LI*(
)
Received:
2024-04-15
Online:
2024-10-23
Published:
2024-11-04
Contact:
Jinshan ZHAO, Hegang LI
E-mail:243252756@qq.com;201501005@qau.edu.cn;201701018@qau.edu.cn
摘要:
旨在利用全基因组关联分析探寻敖汉细毛羊羊毛性状新的分子标记和候选基因。本研究采集1~2周岁的健康敖汉细毛羊耳组织与羊毛作为试验素材,其中,母羊248只,公羊81只,总计329只。羊毛进行性状测定(包括纤维直径、自然长度、伸直长度、伸直率),并对表型数据进行描述性统计和相关性分析。利用绵羊40K液相SNP芯片对全部个体进行基因分型。使用Plink 1.07软件对芯片数据进行质控,使用GCTA软件和PopLDdecay软件对质控数据进行群体结构分析。利用GMEMA混合线性模型对4种羊毛性状进行了全基因组关联分析(genome-wide association study,GWAS),利用在线软件对候选基因进行GO和KEGG富集分析。质控后得到329只个体的30 079个SNPs位点用于后续分析。通过GWAS分析筛选出4个在全基因组上显著相关的SNPs位点可能影响羊毛经济性状,分别位于1号、6号及8号染色体上。筛选出9个在染色体水平上显著相关的SNPs位点可能对羊毛性状具有潜在意义,分别位于3、5、8、11、18、21、22、25号染色体,寻找到39个可能影响羊毛性状的候选基因。本研究结果为后续探究敖汉细毛羊羊毛性状的遗传机制及分子育种标记开发提供重要参考。
中图分类号:
林晓坤, 都萌萌, 周李生, 黄振刚, 王頔, 周东辉, 曹欣欣, 贺建宁, 赵金山, 李和刚. 敖汉细毛羊羊毛经济性状的全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(10): 4346-4359.
Xiaokun LIN, Mengmeng DU, Lisheng ZHOU, Zhengang HUANG, Di WANG, Donghui ZHOU, Xinxin CAO, Jianning HE, Jinshan ZHAO, Hegang LI. Genome-Wide Association Study of Wool Economic Traits in Aohan Fine Wool Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4346-4359.
表 1
敖汉细毛羊羊毛特征描述性统计"
性状 Trait | 平均值 Mean | 标准差 Standard deviation | 最大值 Maximum | 最小值 Minimum | 标准误 Standard error | 变异系数 Coefficient of variation |
纤维直径/μm Fiber diameter | 19.633 | 2.248 | 28.124 | 12.935 | 0.124 | 0.115 |
自然长度/cm Natural length | 7.643 | 0.562 | 11.758 | 5.913 | 0.031 | 0.074 |
伸直长度/cm Elongation length | 10.150 | 0.550 | 4.800 | 7.950 | 0.030 | 0.054 |
伸直率/% Elongation rate | 0.331 | 0.061 | 0.612 | 0.167 | 0.003 | 0.183 |
表 2
4种羊毛性状显著相关的SNPs位点"
性状Trait | 染色体Chromosome | 位置Location | P值P-value |
纤维直径Fiber diameter | 1* | 204762729* | 2.71×10-5* |
21 | 6974831 | 6.25×10-5 | |
25 | 39039643 | 7.88×10-5 | |
22 | 25513088 | 8.52×10-5 | |
自然长度Natural length | 11 | 51282011 | 5.29×10-5 |
3 | 55043579 | 5.38×10-5 | |
伸直长度Elongation length | 8* | 30842589* | 7.05×10-7* |
8* | 30837398* | 1.40×10-5* | |
8 | 30838595 | 4.26×10-5 | |
8 | 30839612 | 4.26×10-5 | |
伸直率Elongation rate | 6* | 103863192* | 3.68×10-5* |
18 | 41285606 | 6.97×10-5 | |
5 | 102267048 | 7.98×10-5 |
表 3
4种羊毛性状相关候选基因信息"
性状 Trait | 候选基因 Candidate gene | 染色体 Chromosome | 基因位置 Gene location | 基因功能 Gene function |
纤维直径 | TTC14 | 1 | 207206481-207216314 | 四肽重复结构域14 |
Fiber diameter | PEX5L | 1 | 207822971-208123012 | 过氧化物酶体生物发生因子5like |
SORCS3 | 22 | 24906767-25561739 | sortilin相关VPS10结构域,含受体3 | |
RAB38 | 21 | 7038110-7103501 | RAB38,RAS癌基因家族成员 | |
LAMP3 | 1 | 204736807-204768779 | 溶酶体相关膜蛋白3 | |
MCF2L2 | 1 | 204444714-204732827 | MCF.2细胞系衍生的转化序列样2 | |
CCSER2 | 25 | 38308913-38471583 | 卷曲螺旋富含丝氨酸的蛋白2 | |
MCCC1 | 1 | 204782521-204835946 | 甲基巴豆酰辅酶A羧化酶亚基1 | |
CTSC | 21 | 6903530-6946938 | 组织蛋白酶C | |
LOC121817525 | 21 | 6905340-6909181 | 未注释 | |
B3GNT5 | 1 | 204616280-204633302 | UDP-GlcNAc:βGal-β-1, 3-N-乙酰氨基葡萄糖转移酶5 | |
LOC101103203 | 1 | 204557231-204633105 | LINE-1逆转录转座元件ORF2蛋白 | |
LOC101114083 | 25 | 38590609-38591984 | 大核糖体亚基蛋白uL4样 | |
LOC121816833 | 1 | 204742573-204782381 | 未注释 | |
TRNAG-CCC | 25 | 39009860-39009930 | 转移RNA甘氨酸(反密码子CCC) | |
TRNAE-UUC | 21 | 6973404-6973477 | 转移RNA谷氨酸(反密码子UUC) | |
自然长度 | RPTOR | 11 | 51177578-51498963 | MTOR复合物1的调节相关蛋白 |
Natural length | ENDOV | 11 | 51502682-51606025 | 核酸内切酶V |
DNAH6 | 3 | 56369583-56658741 | 动力蛋白轴突重链6 | |
SUCLG1 | 3 | 51243758-55249958 | 编码异二聚酶琥珀酸辅酶A连接酶的α亚单位 | |
伸直长度 | ATG5 | 8 | 30899311-31078799 | 自噬相关5 |
Elongation length | PRDM1 | 8 | 31122682-31145193 | PR/SET域1 |
CRYBG1 | 8 | 30674397-30900029 | 含有1个晶体蛋白β-γ结构域 | |
LOC114116251 | 8 | 30756462-30756568 | U6剪接体RNA | |
LOC105611045 | 8 | 31060111-31060993 | 小核糖体亚基蛋白eS1样 | |
LOC114116256 | 8 | 30877462-30877568 | U6剪接体RNA | |
伸直率 | MSX1 | 6 | 104950903-104955183 | MSH同源盒1 |
Elongation rate | TRNAY-GUA | 6 | 105056806-105056878 | 转移RNA酪氨酸(反密码子GUA) |
ERAP2 | 5 | 93929009-93975030 | 内质网氨肽酶2 | |
LNPEP | 5 | 93989905-94095313 | 亮氨酰和半胱氨酸氨基肽酶 | |
NUBPL | 18 | 39830178-40060069 | NUBP铁硫簇组装因子,线粒体 | |
LOC132658121 | 18 | 40026308-40029156 | 5-羟色胺受体1D样 | |
NPAS3 | 18 | 41081921..42048771 | 神经元PAS结构域蛋白3 | |
STX18 | 6 | 105262592-105380010 | 突触融合蛋白18 | |
ZBTB49 | 6 | 105467844-105494203 | 锌指和BTB结构域含有49 | |
NSG1 | 6 | 105379653-105413849 | 神经元囊泡运输相关1 | |
TRNAC-ACA | 6 | 105278250-105278322 | 转移RNA半胱氨酸(反密码子ACA) | |
TRNAS-GGA | 18 | 41753552-41753623 | 转移RNA丝氨酸(反密码子GGA) | |
LOC132659842 | 5 | 94094403-94098907 | 未注释 |
1 |
李莉, 荣威恒, 白俊艳, 等. 影响敖汉细毛羊早期主要性状的非遗传因素分析[J]. 畜牧与饲料科学, 2006, 27 (2): 20- 23.
doi: 10.3969/j.issn.1672-5190.2006.02.012 |
LI L , RONG W H , BAI J Y , et al. Analysis of non-genetic factors influencing early main traits in Aohan merino sheep[J]. Animal Husbandry and Feed Science, 2006, 27 (2): 20- 23.
doi: 10.3969/j.issn.1672-5190.2006.02.012 |
|
2 |
梅花, 荣威恒. 敖汉细毛羊主要数量性状遗传力的估计[J]. 中国草食动物, 2011, 31 (4): 42- 43.
doi: 10.3969/j.issn.2095-3887.2011.04.013 |
MEI H , RONG W H . Estimation of heritability of main quantitative traits in Aohan fine wool sheep[J]. China Herbivores, 2011, 31 (4): 42- 43.
doi: 10.3969/j.issn.2095-3887.2011.04.013 |
|
3 |
柳楠, 王春亮, 贺建宁, 等. 敖汉细毛羊不同部位皮肤毛囊发育及形态结构研究[J]. 中国畜牧杂志, 2015, 51 (17): 1- 5.
doi: 10.3969/j.issn.0258-7033.2015.17.001 |
LIU N , WANG C L , HE J N , et al. Study on skin hair follicle development and morphology of different body parts of Aohan fine wool sheep[J]. Chinese Journal of Animal Science, 2015, 51 (17): 1- 5.
doi: 10.3969/j.issn.0258-7033.2015.17.001 |
|
4 |
WITTENBURG D , BONK S , DOSCHORIS M , et al. Design of experiments for fine-mapping quantitative trait loci in livestock populations[J]. BMC Genet, 2020, 21 (1): 66.
doi: 10.1186/s12863-020-00871-1 |
5 |
SHIROKOVA V , BIGGS L C , JUSSILA M , et al. Foxi3 deficiency compromises hair follicle stem cell specification and activation[J]. Stem Cells, 2016, 34 (7): 1896- 1908.
doi: 10.1002/stem.2363 |
6 | BOTCHKAREV V A , SHAROV A A . BMP signaling in the control of skin development and hair follicle growth[J]. Differentiation, 2004, 72 (9/10): 512- 526. |
7 |
BOLORMAA S , SWAN A A , BROWN D J , et al. Multiple-trait QTL mapping and genomic prediction for wool traits in sheep[J]. Genet Sel Evol, 2017, 49 (1): 62.
doi: 10.1186/s12711-017-0337-y |
8 |
WANG C , YUAN Z H , HU R X , et al. Association of SNPs within PTPN3 gene with wool production and growth traits in a dual-purpose sheep population[J]. Anim Biotechnol, 2023, 34 (4): 1429- 1435.
doi: 10.1080/10495398.2022.2029465 |
9 |
YUE L , LU Z K , GUO T T , et al. Association of SLIT3 and ZNF280B gene polymorphisms with wool fiber diameter[J]. Animals, 2023, 13 (22): 3552.
doi: 10.3390/ani13223552 |
10 |
SALLAM A M , GAD-ALLAH A A , AL-BITAR E M . Association analysis of the ovine KAP6-1 gene and wool traits in Barki sheep[J]. Anim Biotechnol, 2021, 32 (6): 733- 739.
doi: 10.1080/10495398.2020.1749064 |
11 |
SALLAM A M , GAD-ALLAH A A , ALBETAR E M . Genetic variation in the ovine KAP22-1 gene and its effect on wool traits in Egyptian sheep[J]. Arch Anim Breed, 2022, 65 (3): 293- 300.
doi: 10.5194/aab-65-293-2022 |
12 |
MA G W , CHU Y K , ZHANG W J , et al. Polymorphisms of FST gene and their association with wool quality traits in Chinese Merino sheep[J]. PLoS One, 2017, 12 (4): e0174868.
doi: 10.1371/journal.pone.0174868 |
13 |
DARWISH H R , EL-SHORBAGY H M , ABOU-EISHA A M , et al. New polymorphism in the 5' flanking region of IGF-1 gene and its association with wool traits in Egyptian Barki sheep[J]. J Genet Eng Biotechnol, 2017, 15 (2): 437- 441.
doi: 10.1016/j.jgeb.2017.08.001 |
14 | KÖCHL S , NIEDERSTÄTTER H , PARSON W . DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR[J]. Methods Mol Biol, 2005, 297, 13- 30. |
15 | 刘书东. 中国美利奴羊(新疆型)毛品质性状全基因组关联分析[D]. 石河子: 石河子大学, 2017. |
LIU S D. Genome-wide association study for wool production traits in Chinese Merino sheep (Xinjiang type)[D]. Shihezi: Shihezi University, 2017. (in Chinese) | |
16 |
CHANG C C , CHOW C C , TELLIER L C A M , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4 (1): 7.
doi: 10.1186/s13742-015-0047-8 |
17 |
TUERSUNTUOHETI M , ZHANG J H , ZHOU W , et al. Exploring the growth trait molecular markers in two sheep breeds based on Genome-wide association analysis[J]. PLoS One, 2023, 18 (3): e0283383.
doi: 10.1371/journal.pone.0283383 |
18 |
YANG J , LEE S H , GODDARD M E , et al. GCTA: a tool for genome-wide complex trait analysis[J]. Am J Hum Genet, 2011, 88 (1): 76- 82.
doi: 10.1016/j.ajhg.2010.11.011 |
19 |
LI L , LI Y F , MA Q , et al. Analysis of family structure and paternity test of tan sheep in Yanchi Area, China[J]. Animals, 2022, 12 (22): 3099.
doi: 10.3390/ani12223099 |
20 |
ZHANG C , DONG S S , XU J Y , et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics, 2019, 35 (10): 1786- 1788.
doi: 10.1093/bioinformatics/bty875 |
21 |
YU J M , PRESSOIR G , BRIGGS W H , et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nat Genet, 2006, 38 (2): 203- 208.
doi: 10.1038/ng1702 |
22 |
ZHOU X , STEPHENS M . Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44 (7): 821- 824.
doi: 10.1038/ng.2310 |
23 |
PARK M N , CHOI J A , LEE K T , et al. Genome-wide association study of chicken plumage pigmentation[J]. Asian Australas J Anim Sci, 2013, 26 (11): 1523- 1528.
doi: 10.5713/ajas.2013.13413 |
24 |
TURNER S D . Qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots[J]. J Open Source Softw, 2018, 3 (25): 731.
doi: 10.21105/joss.00731 |
25 |
LI M X , YEUNG J M Y , CHERNY S S , et al. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets[J]. Hum Genet, 2012, 131 (5): 747- 756.
doi: 10.1007/s00439-011-1118-2 |
26 |
SAHANA G , GULDBRANDTSEN B , BENDIXEN C , et al. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle[J]. Anim Genet, 2010, 41 (6): 579- 588.
doi: 10.1111/j.1365-2052.2010.02064.x |
27 |
WANG Z P , ZHANG H , YANG H , et al. Genome-wide association study for wool production traits in a Chinese Merino sheep population[J]. PLoS One, 2014, 9 (9): e107101.
doi: 10.1371/journal.pone.0107101 |
28 |
RONG E G , YANG H , ZHANG Z W , et al. Association of methionine synthase gene polymorphisms with wool production and quality traits in Chinese Merino population[J]. J Anim Sci, 2015, 93 (10): 4601- 4609.
doi: 10.2527/jas.2015-8963 |
29 |
MU F , RONG E G , JING Y , et al. Structural characterization and association of ovine Dickkopf-1 gene with wool production and quality traits in Chinese Merino[J]. Genes (Basel), 2017, 8 (12): 400.
doi: 10.3390/genes8120400 |
30 |
LI W R , LIU C X , ZHANG X M , et al. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J]. FEBS J, 2017, 284 (17): 2764- 2773.
doi: 10.1111/febs.14144 |
31 |
ZHAO H C , GUO T T , LU Z K , et al. Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep[J]. BMC Genomics, 2021, 22, 127.
doi: 10.1186/s12864-021-07399-3 |
32 |
BECKER G M , WOODS J L , SCHAUER C S , et al. Genetic association of wool quality characteristics in United States Rambouillet sheep[J]. Front Genet, 2023, 13, 1081175.
doi: 10.3389/fgene.2022.1081175 |
33 |
MARCHINI J , CARDON L R , PHILLIPS M S , et al. The effects of human population structure on large genetic association studies[J]. Nat Genet, 2004, 36 (5): 512- 517.
doi: 10.1038/ng1337 |
34 |
VANRADEN P M . Efficient methods to compute genomic predictions[J]. J Dairy Sci, 2008, 91 (11): 4414- 4423.
doi: 10.3168/jds.2007-0980 |
35 |
ARMSTRONG R A . When to use the Bonferroni correction[J]. Ophthalmic Physiologic Optic, 2014, 34 (5): 502- 508.
doi: 10.1111/opo.12131 |
36 |
WANG J , SHIVAKUMAR S , BARKER K , et al. Comparative study of autoantibody responses between lung adenocarcinoma and benign pulmonary nodules[J]. J Thorac Oncol, 2016, 11 (3): 334- 345.
doi: 10.1016/j.jtho.2015.11.011 |
37 | SALOMONIS N, WILLIGHAGEN E, ROUDBARI Z, et al. Ectoderm differentiation (WP2858)[EB/OL]. (2021-05-12). https://pubchem.ncbi.nlm.nih.gov/pathway/WikiPathways:WP2858. |
38 | GHOSH M , DENKERT N , REUTER M , et al. Dynamics of the translocation pore of the human peroxisomal protein import machinery[J]. Biol Chem, 2023, 404 (2/3): 169- 178. |
39 | LIPIDS C, SLENTER D, WILLIGHAGEN E, et al. Ether lipid biosynthesis (WP5275)[EB/OL]. (2024-01-30). https://www.wikipathways.org/pathways/WP5275.html. |
40 | GOMES M A G B , BAUDUIN A , LE ROUX C , et al. Synthesis of ether lipids: natural compounds and analogues[J]. Beilstein J Org Chem, 2023, 19 (1): 1299- 1369. |
41 |
KAMRAN M , LAIGHNEACH A , BIBI F , et al. Independent associated SNPs at SORCS3 and its protein interactors for multiple brain-related disorders and traits[J]. Genes, 2023, 14 (2): 482.
doi: 10.3390/genes14020482 |
42 |
ZHANG Y Q , LI Y , FAN Y H , et al. SorCS3 promotes the internalization of p75NTR to inhibit GBM progression[J]. Cell Death Dis, 2022, 13 (4): 313.
doi: 10.1038/s41419-022-04753-5 |
43 |
BIANCHETTI E , BATES S J , NGUYEN T T T , et al. RAB38 facilitates energy metabolism and counteracts cell death in glioblastoma cells[J]. Cells, 2021, 10 (7): 1643.
doi: 10.3390/cells10071643 |
44 |
TANAKA T , WARNER B M , MICHAEL D G , et al. LAMP3 inhibits autophagy and contributes to cell death by lysosomal membrane permeabilization[J]. Autophagy, 2022, 18 (7): 1629- 1647.
doi: 10.1080/15548627.2021.1995150 |
45 |
LUNDING L P , KRAUSE D , STICHTENOTH G , et al. LAMP3 deficiency affects surfactant homeostasis in mice[J]. PLoS Genet, 2021, 17 (6): e1009619.
doi: 10.1371/journal.pgen.1009619 |
46 |
KANAO H , ENOMOTO T , KIMURA T , et al. Overexpression of LAMP3/TSC403/DC-LAMP promotes metastasis in uterine cervical cancer[J]. Cancer Res, 2005, 65 (19): 8640- 8645.
doi: 10.1158/0008-5472.CAN-04-4112 |
47 |
HARALAMBIEVA I H , OBERG A L , DHIMAN N , et al. High-dimensional gene expression profiling studies in high and low responders to primary smallpox vaccination[J]. J Infect Dis, 2012, 206 (10): 1512- 1520.
doi: 10.1093/infdis/jis546 |
48 |
MIAO Z R , CAO Q H , LIAO R C , et al. Elevated transcription and glycosylation of B3GNT5 promotes breast cancer aggressiveness[J]. J Exp Clin Cancer Res, 2022, 41 (1): 169.
doi: 10.1186/s13046-022-02375-5 |
49 |
SHARLOW E R , LEIMGRUBER S , LIRA A , et al. A small molecule screen exposes mTOR signaling pathway involvement in radiation-induced apoptosis[J]. ACS Chem Biol, 2016, 11 (5): 1428- 1437.
doi: 10.1021/acschembio.5b00909 |
50 |
SAXTON R A , SABATINI D M . mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168 (6): 960- 976.
doi: 10.1016/j.cell.2017.02.004 |
51 |
SHIRKAVAND A , BOROUJENI Z N , ALEYASIN S A . Examination of methylation changes of VIM, CXCR4, DOK7, and SPDEF genes in peripheral blood DNA in breast cancer patients[J]. Indian J Cancer, 2018, 55 (4): 366- 371.
doi: 10.4103/ijc.IJC_100_18 |
52 |
SONG L L , SHEN L J , LI H , et al. Age at natural menopause and hypertension among middle-aged and older Chinese women[J]. J Hypertens, 2018, 36 (3): 594- 600.
doi: 10.1097/HJH.0000000000001585 |
53 |
TOMASETTI M , MONACO F , STROGOVETS O , et al. ATG5 as biomarker for early detection of malignant mesothelioma[J]. BMC Res Notes, 2023, 16 (1): 61.
doi: 10.1186/s13104-023-06330-1 |
54 |
PASQUALUCCI L , COMPAGNO M , HOULDSWORTH J , et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma[J]. J Exp Med, 2006, 203 (2): 311- 317.
doi: 10.1084/jem.20052204 |
55 |
LIU Y Y , LEBOEUF C , SHI J Y , et al. Rituximab plus CHOP (R-CHOP) overcomes PRDM1-associated resistance to chemotherapy in patients with diffuse large B-cell lymphoma[J]. Blood, 2007, 110 (1): 339- 344.
doi: 10.1182/blood-2006-09-049189 |
56 |
LI Q , ZHANG L R , YOU W H , et al. PRDM1/BLIMP1 induces cancer immune evasion by modulating the USP22-SPI1-PD-L1 axis in hepatocellular carcinoma cells[J]. Nat Commun, 2022, 13 (1): 7677.
doi: 10.1038/s41467-022-35469-x |
57 |
HUANG Y , DE REYNIōS A , DE LEVAL L , et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type[J]. Blood, 2010, 115 (6): 1226- 1237.
doi: 10.1182/blood-2009-05-221275 |
58 |
TAO H Q , GUO L , CHEN L F , et al. MSX1 inhibits cell migration and invasion through regulating the Wnt/β-catenin pathway in glioblastoma[J]. Tumor Biol, 2016, 37 (1): 1097- 1104.
doi: 10.1007/s13277-015-3892-2 |
59 |
MATTORRE B , TEDESCHI V , PALDINO G , et al. The emerging multifunctional roles of ERAP1, ERAP2 and IRAP between antigen processing and renin-angiotensin system modulation[J]. Front Immunol, 2022, 13, 1002375.
doi: 10.3389/fimmu.2022.1002375 |
60 |
MARUSINA A I , JI-XU A , LE S T , et al. Cell-specific and variant-linked alterations in expression of ERAP1, ERAP2, and LNPEP aminopeptidases in psoriasis[J]. J Invest Dermatol, 2023, 143 (7): 1157- 1167. e10.
doi: 10.1016/j.jid.2023.01.012 |
61 |
PALADINI F , FIORILLO M T , TEDESCHI V , et al. The multifaceted nature of aminopeptidases ERAP1, ERAP2, and LNPEP: from evolution to disease[J]. Front Immunol, 2020, 11, 1576.
doi: 10.3389/fimmu.2020.01576 |
62 |
ONG J , TIMENS W , RAJENDRAN V , et al. Identification of transforming growth factor-beta-regulated microRNAs and the microRNA-targetomes in primary lung fibroblasts[J]. PLoS One, 2017, 12 (9): e0183815.
doi: 10.1371/journal.pone.0183815 |
63 |
TU M S , YIN X Q , ZHUANG W Z , et al. NSG1 promotes glycolytic metabolism to enhance Esophageal squamous cell carcinoma EMT process by upregulating TGF-β[J]. Cell Death Discov, 2023, 9 (1): 391.
doi: 10.1038/s41420-023-01694-6 |
64 |
WANG Y H , WU N , SUN D L , et al. NUBPL, a novel metastasis-related gene, promotes colorectal carcinoma cell motility by inducing epithelial-mesenchymal transition[J]. Cancer Sci, 2017, 108 (6): 1169- 1176.
doi: 10.1111/cas.13243 |
65 |
GUILLEMYN B , DE SAFFEL H , BEK J W , et al. Syntaxin 18 defects in human and zebrafish unravel key roles in early cartilage and bone development[J]. J Bone Miner Res, 2023, 38 (11): 1718- 1730.
doi: 10.1002/jbmr.4914 |
66 | HANSPERS K, WILLIGHAGEN E, WEITZ E. Amino acid metabolism (WP3925)[EB/OL]. (2021-05-16). https://pubchem.ncbi.nlm.nih.gov/pathway/WikiPathways:WP3925. |
[1] | 黄红艳, 张力允, 黄智荣, 伍仲平, 张续勐, 欧阳宏佳, 陈俊鹏, 林桢平, 田允波, 李秀金, 黄运茂. 狮头鹅群体遗传多样性和体重体尺全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(9): 3914-3924. |
[2] | 安塔娜, 韩海格, 陶克涛, 宝音德力格尔, 李文博, 芒来. 家马不同毛色遗传特性研究综述[J]. 畜牧兽医学报, 2024, 55(8): 3297-3308. |
[3] | 张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900. |
[4] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[5] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[6] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
[7] | 李柯安宁, 杜丽丽, 安炳星, 邓天宇, 梁忙, 曹晟, 杜悦莹, 徐凌洋, 高雪, 张路培, 李俊雅, 高会江. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676. |
[8] | 王振宇, 张赛博, 刘文慧, 梁栋, 任小丽, 闫磊, 闫跃飞, 高腾云, 张震, 黄河天. 基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因[J]. 畜牧兽医学报, 2023, 54(7): 2848-2857. |
[9] | 张笑科, 廖伟莉, 陈信佑, 李婷婷, 袁晓龙, 李加琪, 黄翔, 张豪. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54(5): 1868-1876. |
[10] | 吴骏, 蔡晓钿, 林清, 钟展明, 叶浩强, 魏趁, 徐志婷, 吴细波, 司景磊, 张哲, 李加琪. 大白猪眼肌面积、估计瘦肉率和背膘厚的加权一步法全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(4): 1403-1414. |
[11] | 张高猛, 丁纪强, 刘昱宏, 郑麦青, 文杰, 赵桂苹, 李庆贺. 全基因组关联分析揭示白羽肉鸡孵化性状的遗传基础[J]. 畜牧兽医学报, 2023, 54(2): 534-544. |
[12] | 范晨宇, 单艳菊, 章明, 姬改革, 巨晓军, 屠云洁, 贺喜, 束婧婷, 刘一帆, 张海涵. 立华麻黄鸡体重和肉品质性状全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(12): 4982-4992. |
[13] | 赵雪洋, 李丹妮, 王钰晨, 郭磊, 王丽, 黄杰, 焦仪强, 安小鹏, 张希云, 张磊, 宋宇轩. 东湖杂交羊产羔性状的GWAS分析及候选基因GRID2的验证[J]. 畜牧兽医学报, 2023, 54(11): 4625-4635. |
[14] | 张昌政, 李德森, 黄敏, 方晓敏, 赵为民, 任守文, 董焕声, 任军, 周李生. 基于全基因组填充重测序关联分析鉴别影响苏山猪初生体尺与乳头数性状的遗传位点[J]. 畜牧兽医学报, 2023, 54(1): 88-102. |
[15] | 吴平先, 陈力, 龙熙, 柴捷, 张廷焕, 徐顺来, 郭宗义, 王金勇. 荣昌猪初产繁殖性状的全基因组关联研究[J]. 畜牧兽医学报, 2023, 54(1): 103-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||