畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 548-558.doi: 10.11843/j.issn.0366-6964.2025.02.007
杨苗苗(), 谢莉, 简宝怡, 罗超维, 谢卓君, 朱飘, 周天日, 李华, 向海*(
)
收稿日期:
2024-05-27
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
向海
E-mail:1079278298@qq.com;xh@fosu.edu.cn
作者简介:
杨苗苗(1999-),女,硕士生,主要从事动物遗传育种与繁殖研究,E-mail: 1079278298@qq.com
基金资助:
YANG Miaomiao(), XIE Li, JIAN Baoyi, LUO Chaowei, XIE Zhuojun, ZHU Piao, ZHOU Tianri, LI Hua, XIANG Hai*(
)
Received:
2024-05-27
Online:
2025-02-23
Published:
2025-02-26
Contact:
XIANG Hai
E-mail:1079278298@qq.com;xh@fosu.edu.cn
摘要:
为探究活体、无创、简单、高效的母鸡腹脂沉积性状测定和选育技术方法,本研究以清远麻鸡为研究对象,将多体尺性状选择法与8种机器学习模型相结合,分别构建不同日龄体尺性状对母鸡腹脂含量的回归预测模型和分类预测模型。利用58~136日龄间各个日龄的多个早期体尺性状结合机器学习方法,体尺测定日龄对预测成年清远麻母鸡腹脂含量的准确性未表现出明显差异;进行回归预测时,RF模型的预测效果最好,拟合效果R2为0.821~0.861,预测误差MAE为6.32~7.27;进行分类预测时,Bagging模型在二分类、三分类中均具有更高的预测准确度,二分类准确度ACC可达94.54%~100%,三分类准确度ACC可达99.58%~100%。本研究基于机器学习建立并优化了优质鸡腹脂沉积活体预测模型,能够为优质鸡腹脂早期活体选育等奠定技术基础,也为腹脂含量预测模型构建的相关技术探索提供参考。
中图分类号:
杨苗苗, 谢莉, 简宝怡, 罗超维, 谢卓君, 朱飘, 周天日, 李华, 向海. 利用机器学习构建和优化早期体尺性状对成年母鸡腹脂沉积的预测模型[J]. 畜牧兽医学报, 2025, 56(2): 548-558.
YANG Miaomiao, XIE Li, JIAN Baoyi, LUO Chaowei, XIE Zhuojun, ZHU Piao, ZHOU Tianri, LI Hua, XIANG Hai. Construction and Optimization of Prediction Models for Abdominal Fat Deposition in Adult Hens based on Early Body Size Traits using Machine Learning[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 548-558.
表 1
数据预处理结果"
日龄/d Age | 项目 Item | 体重/g Weight | 冠高/cm Comb height | 体斜长/cm Body diagonal length | 龙骨长/cm Keel length | 胫长/cm Shank length | 胫围/cm Shank circumference | 腰围/cm Waist circumference | 胸宽/mm Chest width | 胸深/mm Chest depth | 骨盆宽/mm Pelvic width |
58 | 平均值±标准差 | 746.55±83.01 | 0.79±0.24 | 16.45±1.28 | 7.94±0.62 | 6.28±0.73 | 3.23±0.22 | 26.51±1.78 | 47.54±4.92 | 69.3±5.23 | 39.11±3.35 |
相关系数 | 0.17 | 0.10 | 0.15 | 0.11 | 0.03 | 0.04 | 0.02 | 0.06 | 0.00 | 0.05 | |
72 | 平均值±标准差 | 946.1±97.44 | 0.94±0.29 | 18.17±1.06 | 9.35±0.75 | 7.11±0.45 | 3.31±0.18 | 30.2±1.73 | 51.44±3.54 | 68.62±3.88 | 40.83±2.89 |
相关系数 | 0.18 | 0.09 | 0.09 | 0.03 | 0.02 | 0.06 | 0.12 | 0.03 | 0.02 | 0.02 | |
86 | 平均值±标准差 | 1 088.03±111.21 | 1.08±0.46 | 19.48±0.97 | 10.4±0.8 | 7.25±0.39 | 3.37±0.21 | 32.69±1.71 | 57.64±3.46 | 70.63±3.68 | 45.1±2.87 |
相关系数 | 0.24 | 0.02 | 0.15 | 0.07 | 0.05 | 0.02 | 0.22 | 0.12 | 0.14 | 0.04 | |
104 | 平均值±标准差 | 1 214.12±116.96 | 1.56±0.59 | 19.9±1.18 | 11.02±0.61 | 7.36±0.32 | 3.52±0.15 | 33.48±1.71 | 59.66±4.01 | 75.2±4.63 | 49.34±2.5 |
相关系数 | 0.26 | 0.11 | 0.17 | 0.06 | 0.19 | 0.16 | 0.21 | 0.07 | 0.15 | 0.10 | |
119 | 平均值±标准差 | 1 413.07±142.67 | 1.93±0.64 | 20.76±1.15 | 11.86±0.65 | 7.86±0.43 | 3.72±0.18 | 35.81±1.81 | 65.46±3.38 | 81.44±4.27 | 53.31±3.08 |
相关系数 | 0.27 | 0.13 | 0.16 | 0.05 | 0.07 | 0.15 | 0.21 | 0.04 | 0.11 | -0.08 | |
136 | 平均值±标准差 | 1 694.13±177.83 | 2.42±0.66 | 20.86±1.00 | 11.93±0.64 | 7.92±0.45 | 3.71±0.16 | 38.07±1.91 | 68.07±4.81 | 97.93±5.02 | 56.44±3.63 |
相关系数 | 0.38 | 0.01 | 0.14 | 0.04 | 0.00 | 0.07 | 0.23 | 0.14 | 0.13 | 0.03 |
表 3
二分类和三分类里模型的最佳参数"
分类方法 Classification method | 日龄/d Age | KNN (近邻数/n_neighbors) | Bagging (估计器数量/n_estimators) | SVM (正则化参数/C) |
二分类 | 58 | 3 | 50 | 0.01 |
72 | 10 | 5 | 0.01 | |
86 | - | 50 | 1 000 | |
104 | 12 | 20 | 10 | |
119 | 10 | 20 | 0.01 | |
136 | 10 | 20 | 10 | |
三分类 | 58 | 10 | 50 | 0.01 |
72 | 12 | 50 | 0.01 | |
86 | 12 | 50 | 0.01 | |
104 | 12 | 50 | 0.01 | |
119 | 12 | 50 | 0.01 | |
136 | 3 | 50 | 0.01 |
表 4
基于不同日龄体尺性状的特征重要性排序"
日龄/d Age | 指标 Metric | 第一特征 First feature | 第二特征 Second feature | 第三特征 Third feature | 第四特征 Fourth feature | 第五特征 Fifth feature |
58 | DT | 胸宽 | 骨盆宽 | 胸深 | 体斜长 | 冠高 |
RF | 骨盆宽 | 胸深 | 胸宽 | 体斜长 | 体重 | |
GBDT | 胸深 | 胸宽 | 骨盆宽 | 体斜长 | 腰围 | |
XGBoost | 胸宽 | 骨盆宽 | 腰围 | 胫长 | 胫围 | |
72 | DT | 体重 | 骨盆宽 | 腰围 | 胸宽 | 胸深 |
RF | 骨盆宽 | 胸深 | 胸宽 | 体重 | 腰围 | |
GBDT | 骨盆宽 | 胸宽 | 胸深 | 腰围 | 龙骨长 | |
XGBoost | 骨盆宽 | 胸宽 | 胫长 | 龙骨长 | 胸深 | |
86 | DT | 骨盆宽 | 腰围 | 龙骨长 | 胸深 | 胸宽 |
RF | 骨盆宽 | 胸宽 | 腰围 | 胸深 | 体重 | |
GBDT | 骨盆宽 | 胸宽 | 腰围 | 胸深 | 体重 | |
XGBoost | 骨盆宽 | 胸宽 | 腰围 | 胸深 | 胫长 | |
104 | DT | 体重 | 腰围 | 骨盆宽 | 胸深 | 胸宽 |
RF | 体重 | 腰围 | 胸深 | 骨盆宽 | 胸宽 | |
GBDT | 体重 | 腰围 | 胸深 | 骨盆宽 | 胸宽 | |
XGBoost | 胫长 | 腰围 | 胸宽 | 骨盆宽 | 胸深 | |
119 | DT | 骨盆宽 | 体重 | 胸深 | 胸宽 | 胫长 |
RF | 体重 | 胸深 | 骨盆宽 | 胸宽 | 胫长 | |
GBDT | 胸宽 | 体重 | 胸深 | 骨盆宽 | 胫长 | |
XGBoost | 胫围 | 胫长 | 胸宽 | 骨盆宽 | 腰围 | |
136 | DT | 体重 | 胸深 | 骨盆宽 | 胸宽 | 体斜长 |
RF | 体重 | 胸宽 | 骨盆宽 | 胸深 | 腰围 | |
GBDT | 体重 | 骨盆宽 | 胸宽 | 胸深 | 体斜长 | |
XGBoost | 体重 | 骨盆宽 | 胫围 | 胸宽 | 腰围 |
表 5
基于不同日龄特征选择后的体尺性状的回归预测"
日龄/d Age | 模型 Model | 决策树特征选择 DT feature selection | 随机森林特征选择 RF feature selection | 梯度提升决策树特征选择 GBDT feature selection | 梯度提升决策树特征选择 XGBoost feature selection | |||||||||||
决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | 决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | 决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | 决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | |||||
58 | DT | 0.038 | 17.15 | 0.73 | 0.038 | 17.2 | 0.83 | 0.038 | 17.15 | 0.67 | 0.032 | 17.48 | 0.85 | |||
RF | 0.839 | 6.92 | 2.12 | 0.821 | 7.27 | 2.37 | 0.846 | 6.74 | 2.67 | 0.837 | 7.09 | 2.48 | ||||
GBDT | 0.748 | 8.64 | 6.15 | 0.773 | 8.44 | 6.02 | 0.730 | 9.09 | 5.83 | 0.673 | 10.11 | 6.31 | ||||
XGBoost | 0.771 | 7.91 | 1.63 | 0.771 | 7.93 | 2.43 | 0.744 | 8.52 | 1.62 | 0.771 | 8.11 | 2.04 | ||||
72 | DT | 0.044 | 16.85 | 0.57 | 0.044 | 16.85 | 0.73 | 0.044 | 16.85 | 0.63 | 0.020 | 17.23 | 0.97 | |||
RF | 0.842 | 6.96 | 1.98 | 0.842 | 6.96 | 2.28 | 0.846 | 6.86 | 2.14 | 0.846 | 6.80 | 2.37 | ||||
GBDT | 0.732 | 9.15 | 6.42 | 0.732 | 9.15 | 7.34 | 0.728 | 9.04 | 6.39 | 0.734 | 9.11 | 6.72 | ||||
XGBoost | 0.731 | 8.63 | 1.49 | 0.731 | 8.63 | 1.59 | 0.706 | 8.81 | 1.61 | 0.680 | 9.27 | 1.7 | ||||
86 | DT | 0.060 | 17.10 | 0.70 | 0.060 | 17.10 | 1.00 | 0.060 | 17.10 | 0.64 | 0.060 | 17.10 | 0.91 | |||
RF | 0.854 | 6.63 | 2.08 | 0.845 | 6.83 | 2.22 | 0.845 | 6.83 | 2.20 | 0.839 | 6.8 | 2.31 | ||||
GBDT | 0.750 | 8.76 | 6.16 | 0.760 | 8.61 | 6.87 | 0.760 | 8.61 | 8.09 | 0.764 | 8.53 | 6.39 | ||||
XGBoost | 0.708 | 9.16 | 1.63 | 0.692 | 9.36 | 1.67 | 0.692 | 9.36 | 1.66 | 0.768 | 8.26 | 1.77 | ||||
104 | DT | 0.068 | 17.08 | 0.61 | 0.068 | 17.08 | 0.78 | 0.068 | 17.08 | 0.62 | 0.061 | 16.88 | 0.91 | |||
RF | 0.852 | 6.49 | 1.98 | 0.851 | 6.54 | 2.23 | 0.851 | 6.54 | 1.97 | 0.827 | 6.60 | 2.20 | ||||
GBDT | 0.774 | 8.30 | 6.40 | 0.774 | 8.30 | 6.37 | 0.774 | 8.30 | 6.25 | 0.726 | 8.84 | 6.10 | ||||
XGBoost | 0.754 | 8.17 | 8.17 | 0.754 | 8.17 | 1.74 | 0.754 | 8.17 | 1.63 | 0.752 | 7.99 | 1.85 | ||||
119 | DT | 0.057 | 17.18 | 0.61 | 0.057 | 17.18 | 0.75 | 0.057 | 17.18 | 0.63 | 0.042 | 17.25 | 0.90 | |||
RF | 0.857 | 6.55 | 2.21 | 0.855 | 6.56 | 2.14 | 0.854 | 6.59 | 2.06 | 0.851 | 6.51 | 2.26 | ||||
GBDT | 0.776 | 8.09 | 6.00 | 0.776 | 8.09 | 6.56 | 0.776 | 8.09 | 6.82 | 0.745 | 8.48 | 6.39 | ||||
XGBoost | 0.765 | 8.34 | 1.63 | 0.765 | 8.34 | 2.00 | 0.765 | 8.34 | 1.84 | 0.736 | 8.49 | 1.98 | ||||
136 | DT | 0.121 | 16.64 | 0.62 | 0.121 | 16.64 | 1.37 | 0.121 | 16.64 | 0.69 | 0.121 | 16.64 | 1.75 | |||
RF | 0.843 | 6.58 | 2.47 | 0.853 | 6.65 | 2.37 | 0.846 | 6.52 | 2.24 | 0.861 | 6.32 | 2.39 | ||||
GBDT | 0.776 | 7.96 | 6.45 | 0.771 | 8.24 | 6.34 | 0.776 | 7.96 | 7.24 | 0.768 | 8.41 | 5.89 | ||||
XGBoost | 0.792 | 7.69 | 1.57 | 0.777 | 7.93 | 2.76 | 0.792 | 7.69 | 1.12 | 0.782 | 7.61 | 1.74 |
表 6
基于特征选择后的体尺性状在不同日龄中的分类预测"
日龄/d Age | 模型 Model | 二分类 Binary classification | 三分类 Tertiary classification | |||
准确率/% ACC | 时间/s Time | 准确率/% ACC | 时间/s Time | |||
58 | KNN | 79.41 | 0.30 | 66.81 | 0.25 | |
MultinomialNB | 57.56 | 0.05 | 63.03 | 0.04 | ||
SVM | 51.68 | 0.47 | 63.03 | 1.21 | ||
Bagging | 100.00 | 2.10 | 100.00 | 1.90 | ||
72 | KNN | 59.24 | 0.28 | 62.61 | 0.30 | |
MultinomialNB | 51.68 | 0.05 | 63.03 | 0.05 | ||
SVM | 51.68 | 0.44 | 63.03 | 0.75 | ||
Bagging | 94.54 | 1.87 | 100.00 | 2.14 | ||
86 | KNN | 68.07 | 0.63 | 65.97 | 0.26 | |
MultinomialNB | 52.10 | 0.06 | 63.03 | 0.05 | ||
SVM | 56.30 | 0.46 | 63.03 | 0.73 | ||
Bagging | 100.00 | 1.97 | 100.00 | 2.02 | ||
104 | KNN | 65.55 | 0.39 | 63.87 | 0.27 | |
MultinomialNB | 51.68 | 0.07 | 63.03 | 0.05 | ||
SVM | 56.30 | 0.58 | 63.03 | 0.69 | ||
Bagging | 99.58 | 2.27 | 100.00 | 1.88 | ||
119 | KNN | 65.97 | 0.41 | 63.45 | 0.29 | |
MultinomialNB | 51.68 | 0.06 | 63.03 | 0.05 | ||
SVM | 51.68 | 0.50 | 63.03 | 0.76 | ||
Bagging | 99.58 | 0.58 | 99.58 | 2.28 | ||
136 | KNN | 68.07 | 0.29 | 75.21 | 0.32 | |
MultinomialNB | 59.24 | 0.05 | 63.45 | 0.06 | ||
SVM | 59.66 | 0.53 | 63.03 | 0.70 | ||
Bagging | 99.58 | 1.91 | 100.00 | 2.50 |
1 | 蔡艳. 畜牧业发展的制约因素及其宏观调控问题[J]. 吉林畜牧兽医, 2023, 44 (1): 115- 116. |
CAI Y . Constraints to livestock development and its macro-control issues[J]. Jilin Animal Husbandry and Veterinary Medicine, 2023, 44 (1): 115- 116. | |
2 | 广东畜牧兽医学会. 当前黄羽肉鸡产业发展痛点分析和应对思考[J]. 家禽科学, 2022, (2): 17- 18. |
Guangdong Assoication of Animal Husbandry and Veterinary Medicine . Analysis of the current pain points in the development of the yellow-feathered broiler industry and the response to thinking[J]. Poultry Science, 2022, (2): 17- 18. | |
3 | 冷丽, 张慧, 王宇祥, 等. 低脂肉鸡选育方法研究进展[J]. 中国家禽, 2019, 41 (12): 1- 4. |
LENG L , ZHANG H , WANG Y X , et al. Research progress of lean broiler selection methods[J]. China Poultry, 2019, 41 (12): 1- 4. | |
4 | RUCHAY A , GRITSENKO S , ERMOLOVA E , et al. A comparative study of machine learning methods for predicting live weight of duroc, landrace, and yorkshire pigs[J]. Animals (Basel), 2022, 12 (9): 1152. |
5 |
XU W , VAN KNEGSEL A T M , VERVOORT J J M , et al. Prediction of metabolic status of dairy cows in early lactation with on-farm cow data and machine learning algorithms[J]. J Dairy Sci, 2019, 102 (11): 10186- 10201.
doi: 10.3168/jds.2018-15791 |
6 |
CHEN J T , HE P G , JIANG J S , et al. In vivo prediction of abdominal fat and breast muscle in broiler chicken using live body measurements based on machine learning[J]. Poult Sci, 2023, 102 (1): 102239.
doi: 10.1016/j.psj.2022.102239 |
7 |
CAMACHO-PÉREZ E , LUGO-QUINTAL J M , TIRINK C , et al. Predicting carcass tissue composition in blackbelly sheep using ultrasound measurements and machine learning methods[J]. Trop Anim Health Prod, 2023, 55 (5): 300.
doi: 10.1007/s11250-023-03759-1 |
8 |
HE Y P , TIEZZI F , HOWARD J , et al. Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms[J]. Comput Electron Agric, 2021, 184, 106085.
doi: 10.1016/j.compag.2021.106085 |
9 |
TSAI I J , SHEN W C , LEE C L , et al. Machine learning in prediction of bladder cancer on clinical laboratory data[J]. Diagnostics (Basel), 2022, 12 (1): 203.
doi: 10.3390/diagnostics12010203 |
10 | 巴桑旺堆, 平措占堆, 朱彦宾, 等. 线性模型与机器学习模型对牦牛体重预测的比较[J]. 现代农业科技, 2019, (23): 205-206, 208. |
BASANG W D , PUNTSO Z D , ZHU Y B , et al. Comparison of accuracy of linear model and machine learning model in predication of yak body weight[J]. Modern Agricultural Science and Technology, 2019, (23): 205-206, 208. | |
11 |
LOH W Y . Fifty years of classification and regression trees[J]. Int Stat Rev, 2014, 82 (3): 329- 348.
doi: 10.1111/insr.12016 |
12 | LOUPPE G. Understanding random forests: from theory to practice[J]. arXiv: 1407.7502, 2014. |
13 |
FRIEDMAN J H . Greedy function approximation: a gradient boosting machine[J]. Ann Statist, 2001, 29 (5): 1189- 1232.
doi: 10.1214/aos/1013203450 |
14 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794. |
15 | YU X G, YU X P. The research on an adaptive K-nearest neighbors classifier[C]//Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian: IEEE, 2006: 1241-1246. |
16 | ZHANG H. The optimality of naive Bayes[C]//Proceedings of the 17th International Florida Artificial Intelligence Research Society Conference. Miami Beach: AAAI, 2004: 562-567. |
17 | WINTERS-HILT S , MERAT S . SVM clustering[J]. BMC Bioinformatics, 2007, 8 Suppl 7 (Suppl 7): S18. |
18 | BREIMAN L . Bagging predictors[J]. Mach Learn, 1996, 24 (2): 123- 140. |
19 | RAMAKRISHNAN S . Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies[J]. Comput Rev, 2016, 57 (6): 346- 346. |
20 | 徐振强, 彭志军, 季从亮, 等. 优质型黄羽肉鸡腹脂的遗传选择[J]. 中国畜牧杂志, 2019, 55 (2): 62- 65. |
XU Z Q , PENG Z J , JI C L , et al. Genetic selection for abdominal fat in quality-type yellow-feathered broilers[J]. Chinese Journal of Animal Science, 2019, 55 (2): 62- 65. | |
21 | LIN W J , REN T H , LI W Y , et al. Novel 61-bp indel of RIN2 is associated with fat and hatching weight traits in chickens[J]. Front Genet, 2021, 12, 672888. |
22 | ZHANG H L , XU Z Q , YANG L L , et al. Genetic parameters for the prediction of abdominal fat traits using blood biochemical indicators in broilers[J]. Br Poult Sci, 2018, 59 (1): 28- 33. |
23 | 张蕊, 汤青萍, 穆春宇, 等. 超声波法测量肉鸽胸肌厚度及鸽屠宰、体重、体尺性状间的相关分析[J]. 黑龙江畜牧兽医, 2019, (22): 151- 153. |
ZHANG R , TANG Q P , MU C Y , et al. Measurement of pectoral muscle thickness in meat pigeons by ultrasonic method and correlation analysis between pigeon slaughter, body weight and body size traits[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019, (22): 151- 153. | |
24 | TRAKULPANITKIT A , TUNTHANATHIP T . Comparison of intracranial pressure prediction in hydrocephalus patients among linear, non-linear, and machine learning regression models in Thailand[J]. Acute Crit Care, 2023, 38 (3): 362- 370. |
25 | TZOU S J , PENG C H , HUANG L Y , et al. Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort[J]. J Chin Med Assoc, 2023, 86 (11): 1028- 1036. |
26 | ALKUTBE R B , ALRUBAN A , ALTURKI H , et al. Fat mass prediction equations and reference ranges for Saudi Arabian children aged 8-12 years using machine technique method[J]. PeerJ, 2021, 9, e10734. |
27 | HUSSAIN S A , CAVUS N , SEKEROGLU B . Hybrid machine learning model for body fat percentage prediction based on support vector regression and emotional artificial neural networks[J]. Appl Sci, 2021, 11 (21): 9797. |
28 | HORVAT T , HAVAŠ L , SRPAK D . The impact of selecting a validation method in machine learning on predicting basketball game outcomes[J]. Symmetry, 2020, 12 (3): 431. |
29 | CHEN R Y , ZHAO Y L , YANG Y L , et al. Online estimating weight of white Pekin duck carcass by computer vision[J]. Poult Sci, 2023, 102 (2): 102348. |
30 | ASHRI S E A , EL-GAYAR M M , EL-DAYDAMONY E M . HDPF: Heart disease prediction framework based on hybrid classifiers and genetic algorithm[J]. IEEE Access, 2021, 9, 146797- 146809. |
31 | ESSAM Y , HUANG Y F , BIRIMA A H , et al. Predicting suspended sediment load in peninsular Malaysia using support vector machine and deep learning algorithms[J]. Sci Rep, 2022, 12 (1): 302. |
32 | LIU X Q , WU Q L , PAN W T . Sentiment classification of micro-blog comments based on randomforest algorithm[J]. Concurr Comput Pract Exp, 2019, 31 (10): e4746. |
33 | HWANG M S , SONG E , AHN J , et al. Machine learning-based prediction of abdominal subcutaneous fat thickness during pregnancy[J]. Metab Syndr Relat Disord, 2023, 21 (9): 479- 488. |
34 | JEON Y , KIM Y J , JEON J , et al. Machine learning based prediction of recurrence after curative resection for rectal cancer[J]. PLoS One, 2023, 18 (12): e0290141. |
35 | MARCOS-PASERO H , COLMENAREJO G , AGUILAR-AGUILAR E , et al. Ranking of a wide multidomain set of predictor variables of children obesity by machine learning variable importance techniques[J]. Sci Rep, 2021, 11 (1): 1910. |
36 | LI B , BEATON D , EISENBERG N , et al. Using machine learning to predict outcomes following carotid endarterectomy[J]. J Vasc Surg, 2023, 78 (4): 973- 987.e6. |
37 | ZHANG M , ZHANG Y G , YU S Y , et al. Two machine learning approaches for predicting cyanobacteria abundance in aquaculture ponds[J]. Ecotoxicol Environ Saf, 2023, 258, 114944. |
38 | OLLAGNIER C , KASPER C , WALLENBECK A , et al. Machine learning algorithms can predict tail biting outbreaks in pigs using feeding behaviour records[J]. PLoS One, 2023, 18 (1): e0252002. |
39 | SEMAKULA J , CORNER-THOMAS R A , MORRIS S T , et al. Application of machine learning algorithms to predict body condition score from liveweight records of mature Romney ewes[J]. Agriculture, 2021, 11 (2): 162. |
40 | RUCHAY A , KOBER V , DOROFEEV K , et al. Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows[J]. Comput Electron Agric, 2022, 195, 106837. |
[1] | 苏蒙, 刘莎, 宋丹丽, 高倩梅, 郑麦青, 文杰, 赵桂苹, 李庆贺. 基于转录组测序筛选肉鸡腹水综合征相关候选基因[J]. 畜牧兽医学报, 2025, 56(2): 559-570. |
[2] | 王涛, 王麒, 董娇娇, 王德贺, 李兰会. 双向启动子调控鸡胚性腺PRLR和SPEF2的转录表达[J]. 畜牧兽医学报, 2025, 56(2): 666-678. |
[3] | 张喜闻, 尹月, 李响, 王敏, 王永芳, 靳舒宁, 冯鑫辉, 赵玉蓉. 熊果酸对肉鸡胸肌肉品质和木质化鸡胸肉的影响[J]. 畜牧兽医学报, 2025, 56(2): 711-721. |
[4] | 杭振宇, 汪子怡, 张林, 邢通, 赵良, 高峰. 不同来源玉米28日龄白羽肉鸡标准回肠氨基酸消化率评定和预测方程的建立[J]. 畜牧兽医学报, 2025, 56(2): 722-736. |
[5] | 卢建, 马猛, 郭军, 王星果, 窦套存, 胡玉萍, 王强, 李永峰, 邵丹, 童海兵, 郭杰, 曲亮. 育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育的关键基因和信号通路研究[J]. 畜牧兽医学报, 2025, 56(2): 737-754. |
[6] | 李远方, 吴冉, 李帅浩, 魏千然, 王亚东, 王丹丹, 李智, 李国喜, 刘翘铭. G3BP1基因在鸡肌内前脂肪细胞增殖与分化中的作用及其分子标记鉴定[J]. 畜牧兽医学报, 2025, 56(1): 159-167. |
[7] | 尹琼, 高明超, 姚秀梅, 刘昆煜, 刘玮, 揭泓蔚, 李华, 叶菲. 沐川乌骨鸡胸肌黑色素含量与PMEL17基因的关联性分析[J]. 畜牧兽医学报, 2025, 56(1): 168-177. |
[8] | 吴双, 尹娜, 余莫涵, 平玉宇, 白皓, 陈世豪, 常国斌. TRIM39.2过表达对鸡巨噬细胞转录表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 178-188. |
[9] | 阳文攀, 刘相杰, 罗冬香, 陈梦会, 谢瑛, 方跃鑫, 林婷燕, 李爱民, 李文静, 邓政, 丁能水. 基于芯片数据的长白猪繁殖性状基因组选择研究[J]. 畜牧兽医学报, 2025, 56(1): 213-221. |
[10] | 王贝贝, 武书庚, 张海华, 张海军, 郝二英, 邱凯. 饲粮添加大豆异黄酮对产蛋后期蛋鸡生产的影响[J]. 畜牧兽医学报, 2025, 56(1): 295-306. |
[11] | 王艺, 侯露露, 方菲, 高林英, 谢淑敏, 王雨. 氟通过自噬和铁死亡途径诱发肉鸡小肠氧化损伤[J]. 畜牧兽医学报, 2025, 56(1): 442-454. |
[12] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[13] | 张纪桥, 蔡瑛婕, 李雨笑, 曹敞, 李涛, 鲍秀瑜, 张建勤. 不同饲养模式下略阳乌鸡生长性能、免疫、肠道结构及盲肠菌群的对比分析[J]. 畜牧兽医学报, 2024, 55(9): 4001-4011. |
[14] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
[15] | 刘馨蔓, 周鸿缘, 桑锐, 葛冰洁, 闫可心, 王巍, 于明弘, 刘晓童, 邱谦, 张雪梅. 蒲公英甾醇对AFB1性肝损伤肉鸡肝组织氧化应激的影响[J]. 畜牧兽医学报, 2024, 55(9): 4141-4152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||