畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3914-3924.doi: 10.11843/j.issn.0366-6964.2024.09.016
黄红艳1(), 张力允1(
), 黄智荣1, 伍仲平1, 张续勐1, 欧阳宏佳1, 陈俊鹏2, 林桢平2, 田允波1, 李秀金1,*(
), 黄运茂1,*(
)
收稿日期:
2024-03-18
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
李秀金,黄运茂
E-mail:huanghongyan@zhku.edu.cn;zhangliyun@zhku.edu.cn;lixiujin996@126.com;huangyunmao@zhku.edu.cn
作者简介:
黄红艳(1995-),男,河南开封人,硕士,主要从事水禽遗传育种研究,E-mail:huanghongyan@zhku.edu.cn黄红艳和张力允为同等贡献作者
基金资助:
Hongyan HUANG1(), Liyun ZHANG1(
), Zhirong HUANG1, Zhongping WU1, Xumeng ZHANG1, Hongjia OUYANG1, Junpeng CHEN2, Zhenping LIN2, Yunbo TIAN1, Xiujin LI1,*(
), Yunmao HUANG1,*(
)
Received:
2024-03-18
Online:
2024-09-23
Published:
2024-09-27
Contact:
Xiujin LI, Yunmao HUANG
E-mail:huanghongyan@zhku.edu.cn;zhangliyun@zhku.edu.cn;lixiujin996@126.com;huangyunmao@zhku.edu.cn
摘要:
旨在探究狮头鹅群体遗传多样性和体重体尺性状全基因关联分析。本试验随机选取2年龄休产状态的狮头鹅111只(公鹅20、母鹅91只),进行体重和体尺指标表型测定和二代基因组测序(5×),对测序数据进行SNPs位点检测,计算狮头鹅群体遗传多样性指标,利用单标记回归混合模型开展SNPs与体重体尺性状的关联分析。本试验采用Bonferroni法校正,即全基因组水平阈值(0.05/总SNPs)和染色体水平阈值(0.05/染色体SNP数目),确定显著性SNPs位点,并对染色体水平显著性SNPs位点上、下游50 kb进行基因注释。经过质控,共计获得7 577 552个有效SNPs用于进一步分析。群体多样性分析显示,历史有效群体含量、最小等位基因频率、多态信息含量、观察杂合度、期望杂合度和近交系数分别为234、0.25、0.34、0.26、0.34和0.22。共检测出6 164个连续纯合片段,长度在1.0~2.0 Mb的纯合片段占比最多(74.4%)。体重体尺性状的全基因组关联分析发现38个染色体水平显著性SNPs,涉及90个基因。其中影响生长发育相关的基因有7个,即D2HDH、THAP4、ESPNL、EPT1、TNPO3、MCF2L、AIP1。本研究利用二代基因组测序数据发现,狮头鹅群体存在一定程度近交现象,挖掘出与狮头鹅体重和体尺性状相关的7个候选基因,可为后续狮头鹅群体保种、功能基因研究和分子育种开展提供重要参考。
中图分类号:
黄红艳, 张力允, 黄智荣, 伍仲平, 张续勐, 欧阳宏佳, 陈俊鹏, 林桢平, 田允波, 李秀金, 黄运茂. 狮头鹅群体遗传多样性和体重体尺全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(9): 3914-3924.
Hongyan HUANG, Liyun ZHANG, Zhirong HUANG, Zhongping WU, Xumeng ZHANG, Hongjia OUYANG, Junpeng CHEN, Zhenping LIN, Yunbo TIAN, Xiujin LI, Yunmao HUANG. The Study on Population Genetic Diversity and Genome-wide Association Study of Body Weight and Size Traits for Lion-head Geese[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3914-3924.
表 1
狮头鹅体重和体尺描述统计"
测定指标 Trait | 样本数量/只 Number | 平均值 Mean | 标准差 SD | 最大值 Max | 最小值 Min | 变异系数/% C.V |
体重/kg Body weight | 111 | 6.11 | 0.94 | 8.63 | 3.98 | 15.45 |
胸宽/cm Chest width | 111 | 116.99 | 5.35 | 138.61 | 104.03 | 4.58 |
胸深/cm Chest depth | 111 | 117.39 | 5.44 | 134.60 | 106.36 | 4.63 |
胫长/cm Tibia length | 111 | 102.69 | 4.10 | 113.94 | 92.10 | 3.99 |
骨盆宽/cm Pelvic width | 111 | 101.36 | 4.07 | 107.65 | 69.93 | 4.02 |
颈围/cm Neck circumference | 111 | 12.52 | 1.03 | 15.60 | 11.50 | 8.23 |
颈长/cm Neck length | 111 | 35.30 | 2.35 | 42.30 | 32.50 | 6.66 |
体斜长/cm Body-slant length | 111 | 36.95 | 1.74 | 41.80 | 33.80 | 4.72 |
龙骨长/cm Keel length | 111 | 18.94 | 1.15 | 22.50 | 16.10 | 6.06 |
胫围/cm Tibia circumference | 111 | 6.39 | 0.35 | 7.73 | 5.67 | 5.54 |
表 2
狮头鹅群体的遗传多样性"
遗传多样性指标 The indexes of genetic diversity | 平均值±标准差 Mean±SD |
有效群体含量 Effective population size(Ne) | 234(13世代以前) |
最小等位基因频率 Minor allele frequency(MAF) | 0.25±0.13 |
多态信息含量 Polymorphism information content(PIC) | 0.34±0.13 |
观察杂合度 Observed heterozygosity(Ho) | 0.26±0.11 |
期望杂合度 Expected heterozygosity(He) | 0.34±0.13 |
近交系数 Inbreeding coefficient(F) | 0.22±0.10 |
表 4
显著性SNPs位点"
性状 Trait | 染色体 Chromosome | SNPs位置 Position | 功能注释 Function annotation | 候选基因 Gene |
体重 Body weight | 5 | 5:2300617 | 内含子 | ACKA |
8 | 8:30133648 | 基因间 | / | |
9 | 9:11552267 | 基因上游 | T4S1、NEUR4、ESPNL、G3ST2、THAP4、KTHY、ATG4B、D2HDH | |
20 | 20:10823559 | 内含子 | CABP8 | |
胸宽 Chest width | 8 | 8:6837235 | 内含子 | TT39A、EPS15 |
14 | 14:17266712 | 基因间 | / | |
胸深 Chest depth | 1 | 1:147040959 | 内含子 | PCID2、LAMP1、CUL4A、MCF2L、FA10 |
2 | 2:47791095 | 基因间 | / | |
3 | 3:14051391 | 基因间 | / | |
4 | 4:59812177 | 基因间 | / | |
5 | 5:17426205 | 基因上游 | RTJK、KS6A5、TTC7B | |
20 | 20:8724007 | 基因间 | RFC2、NTAL、CLIP2 | |
骨盆宽 Pelvic width | 14 | 14:1516505 | 基因间 | RNF14、GNPI1 |
18 | 18:3587225 | 内含子 | CCG4、CCG1 | |
30 | 30:1992836 | 基因间 | OPSB | |
体斜长Body-slant length | 2 | 2:44820521 | 基因下游 | EPT1、MARE2 |
龙骨长 Keel length | 1 | 1:1229901 | 内含子 | TNPO3、SND1 |
1 | 1:48378687 | 内含子 | RTJK、LKHA4、HUTI、HUTH | |
18 | 18:7043981 | 基因下游 | OTOP3、USH1G、OTOP2、HID1、FADS6、CDR2L | |
颈长 Neck length | 10 | 10:15832904 | 内含子 | MAGI1 |
10 | 10:20923440 | 基因间 | / | |
14 | 14:10667386 | 基因间 | DUS1 | |
14 | 14:10717636 | 内含子 | RTJK | |
颈围 Neck circumference | 2 | 2:8295313 | 基因间 | SIA4A |
2 | 2:72691717 | 内含子 | AIP1、RTJK | |
21 | 21:7325312 | 内含子 | TPRGL、WRP73、MEGF6 | |
22 | 22:424407 | 内含子 | CLD22、ZBT16、5HT3A、UBP28 | |
29 | 29:3363012 | 基因上游 | RPOB、POL、FV1 | |
30 | 30:1318061 | 基因下游 | CP2G1、CP2C2、POL、ZC11A、O14J1 | |
胫长 Tibia length | 8 | 8:11781946 | 基因间 | CA210、TIE1、ELOV1、CDC20、PIF1、EBP2、CFA57 |
8 | 8:11929974 | 基因间 | SIA7C | |
8 | 8:14984264 | 内含子 | DNS2B、VIT2、RPF1、URIC | |
8 | 8:15008813 | 内含子 | VIT2、RPF1 | |
10 | 10:8281363 | 内含子 | ZMY10、TM115、C56D2、NPRL2、CA2D2 | |
16 | 16:1652251 | 内含子 | ZBT46、TPD54、DNJC5 | |
胫围 Tibia circumference | 17 | 17:12971390 | 基因上游 | VP37B、APC7、HIP1R、CCD62、AT2A2、GPN3 |
18 | 18:11564724 | 基因间 | FHAB、SHSA6 | |
30 | 30:1234187 | 内含子 | CP2G1、CP2C2、DCAF8、CCD81 |
1 | 郭精奇. 饶平狮头鹅美誉传四方[J]. 源流, 2022, (8): 40- 41. |
GUO J Q . Raoping lion-head geese's good reputation spreads across the world[J]. Origins, 2022, (8): 40- 41. | |
2 |
刘思扬, 刘秋翔. 饶平狮头鹅[J]. 广东畜牧兽医科技, 2019, 44 (6): 10- 13.
doi: 10.3969/j.issn.1005-8567.2019.06.004 |
LIU S Y , LIU Q X . Lion-head goose from Raoping[J]. Guangdong Journal of Animal and Veterinary Science, 2019, 44 (6): 10- 13.
doi: 10.3969/j.issn.1005-8567.2019.06.004 |
|
3 |
李国治, 邓卫东. 基因组测序技术及其应用研究进展[J]. 安徽农业科学, 2018, 46 (22): 20-22, 25.
doi: 10.3969/j.issn.0517-6611.2018.22.006 |
LI G Z , DENG W D . Research progress and application of genome sequencing technology[J]. Journal of Anhui Agricultural Sciences, 2018, 46 (22): 20-22, 25.
doi: 10.3969/j.issn.0517-6611.2018.22.006 |
|
4 | 范广轩, 王洪亮, 邢秀梅. SNP标记的研究进展及其应用[J/OL]. 特产研究, 2023, doi: 10.16720/j.cnki.tcyj.2023.209. |
FAN G X, WANG H L, XING X M. Advances in SNP marker research and its applications[J/OL]. Special Wild Economic Animal and Plant Research, 2023, doi: 10.16720/j.cnki.tcyj.2023.209.(inChinese) | |
5 | 张顺进, 张花菊, 王红利, 等. 郏县红牛全基因组测序分析及关键基因SNP分子标记在育种的应用研究[J]. 中国牛业科学, 2021, 47 (5): 5- 8. |
ZHANG S J , ZHANG H J , WANG H L , et al. Whole genome sequencing analysis and application of key gene SNP molecular markers in Jiaxian red cattle breeding[J]. China Cattle Science, 2021, 47 (5): 5- 8. | |
6 |
齐丽娜, 陆雪林, 杨凯旋, 等. 基于SNP芯片分析新浦东鸡的遗传多样性和遗传结构[J]. 畜牧兽医学报, 2023, 54 (12): 4962- 4971.
doi: 10.11843/j.issn.0366-6964.2023.12.008 |
QI L N , LU X L , YANG K X , et al. Analysis of genetic diversity and genetic structure of New Pudong chicken based on SNP chips[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (12): 4962- 4971.
doi: 10.11843/j.issn.0366-6964.2023.12.008 |
|
7 | 马钧, 樊安平, 王武生, 等. 全基因组重测序解析秦川牛保种群遗传多样性和遗传结构[J]. 遗传, 2023, 45 (7): 602- 616. |
MA J , FAN A P , WANG W S , et al. Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing[J]. Hereditas (Beijing), 2023, 45 (7): 602- 616. | |
8 | 曹宇浩. 湖羊体重性状GWAS分析与相关SNPs验证及快速检测方法的研究[D]. 南京: 南京农业大学, 2020. |
CAO Y H. Genome-wide association study of body weights in Hu sheep and related SNPs validation and rapid detection methods[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese) | |
9 | 吕世杰, 陈付英, 张子敬, 等. 南阳牛生长性状相关基因组区域全基因组关联分析[J]. 中国畜牧兽医, 2020, 47 (1): 74- 82. |
LV S J , CHEN F Y , ZHANG Z J , et al. Genomic regions associated with growth traits in Nanyang cattle using genome-wide association analysis[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (1): 74- 82. | |
10 | 姜宏正, 荀文娟, 侯冠彧, 等. 家禽重要性状全基因组关联分析研究进展[J]. 黑龙江畜牧兽医, 2022, (11): 32- 38. |
JIANG H Z , XUN W J , HOU G Y , et al. Research progress of genome-wide association analysis of important traits in poultry[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022, (11): 32- 38. | |
11 |
黎旺长, 刘玮玮, 龙佳佳, 等. 基于基因组重测序的广西地方猪种遗传多样性和选择信号分析[J]. 南方农业学报, 2023, 54 (8): 2415- 2422.
doi: 10.3969/j.issn.2095-1191.2023.08.023 |
LI W C , LIU W W , LONG J J , et al. Genetic diversity and selection signals analysis of Guangxi local pig breeds based on whole-genome resequencing[J]. Journal of Southern Agriculture, 2023, 54 (8): 2415- 2422.
doi: 10.3969/j.issn.2095-1191.2023.08.023 |
|
12 | 田帅帅, 钟梓奇, 倪世恒, 等. 基于全基因组重测序数据对文昌鸡不同保种群保种现状的分析[J]. 黑龙江畜牧兽医, 2023, (13): 51-54, 62, 134. |
TIAN S S , ZHONG Z Q , NI S H , et al. Analysis of the conservation status of different conservancies of Wenchang chickens based on whole genome resequencing data[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023, (13): 51-54, 62, 134. | |
13 | 蒋烈戈, 彭健, 代蓉, 等. 基于基因组SNP信息分析新疆夏洛莱牛群体的遗传结构和遗传背景初报[J]. 草食家畜, 2023, (1): 9- 15. |
JIANG L G , PENG J , DAI R , et al. Analysis of genetic structure and background of Xinjiang Charolais based on genomic SNP information[J]. Grass-Feeding Livestock, 2023, (1): 9- 15. | |
14 |
高超群, 曹然然, 杜文苹, 等. 基于全基因组SNP标记分析中国地方鸡品种的遗传多样性和种群结构[J]. 畜牧兽医学报, 2023, 54 (2): 554- 562.
doi: 10.11843/j.issn.0366-6964.2023.02.013 |
GAO C Q , CAO R R , DU W P , et al. Genetic diversity and population structure analysis of Chinese native chicken breeds using genome-wide SNPs[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 554- 562.
doi: 10.11843/j.issn.0366-6964.2023.02.013 |
|
15 | 中华人民共和国农业农村部. NY/T 823—2020家禽生产性能名词术语和度量计算方法[S]. 北京: 中国农业出版社, 2020. |
Ministry of Agriculture and Rural Affairs of the People 's Republic of China. NY/T 823—2020 Performance terminology and measurements for poultry[S]. Beijing: China Agriculture Press, 2020. (in Chinese) | |
16 |
SONG H , CHU J Y , LI W J , et al. A novel approach utilizing domain adversarial neural networks for the detection and classification of selective sweeps[J]. Adv Sci (Weinh), 2024, 11 (14): 2304842.
doi: 10.1002/advs.202304842 |
17 |
ZHANG K L , LIANG J T , FU Y H , et al. AGIDB: a versatile database for genotype imputation and variant decoding across species[J]. Nucleic Acids Res, 2024, 52 (D1): D835- D849.
doi: 10.1093/nar/gkad913 |
18 |
DÍAZ-MATUS DE LA PARRA M , INOSTROZA K , ALCALDE J A , et al. Characterization of the genetic diversity, structure, and admixture of 7 Chilean chicken breeds[J]. Poult Sci, 2024, 103 (2): 103238.
doi: 10.1016/j.psj.2023.103238 |
19 |
VISSCHER P M , WRAY N R , ZHANG Q , et al. 10 Years of GWAS discovery: biology, function, and translation[J]. Am J Hum Genet, 2017, 101 (1): 5- 22.
doi: 10.1016/j.ajhg.2017.06.005 |
20 |
VANRADEN P M . Efficient methods to compute genomic predictions[J]. J Dairy Sci, 2008, 91 (11): 4414- 4423.
doi: 10.3168/jds.2007-0980 |
21 |
ZHAO Q Q , LIN Z P , CHEN J P , et al. Chromosome-level genome assembly of goose provides insight into the adaptation and growth of local goose breeds[J]. GigaScience, 2022, 12, giad003.
doi: 10.1093/gigascience/giad003 |
22 |
王海龙, 王巧, 邢思远, 等. 基于表型和基因组信息评价北京油鸡保种群保种情况[J]. 畜牧兽医学报, 2021, 52 (9): 2406- 2415.
doi: 10.11843/j.issn.0366-6964.2021.09.004 |
WANG H L , WANG Q , XING S Y , et al. Evaluating Beijing you chickens conservation status by phenotype and genome information[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (9): 2406- 2415.
doi: 10.11843/j.issn.0366-6964.2021.09.004 |
|
23 | 季华员, 黄江南, 李海琴, 等. 兴国灰鹅微卫星标记的遗传多样性分析[J]. 畜牧与兽医, 2017, 49 (8): 6- 9. |
JI H Y , HUANG J N , LI H Q , et al. Genetic diversity analysis of Xingguo gray goose based on microsatellite markers[J]. Animal Husbandry & Veterinary Medicine, 2017, 49 (8): 6- 9. | |
24 |
郭徵力, 赵中龙, 杨红, 等. 织金白鹅微卫星标记遗传多样性及其与体尺指标的关联分析[J]. 农业生物技术学报, 2023, 31 (11): 2341- 2357.
doi: 10.3969/j.issn.1674-7968.2023.11.012 |
GUO Z L , ZHAO Z L , YANG H , et al. Genetic diversity of microsatellite markers in Zhijin white geese (Anser cygnoides orientalis) and its association analysis with body size indexes[J]. Journal of Agricultural Biotechnology, 2023, 31 (11): 2341- 2357.
doi: 10.3969/j.issn.1674-7968.2023.11.012 |
|
25 |
刘继强, 郝晓东, 武丽娜, 等. 全基因组SNP分型技术在畜禽遗传育种研究中的应用[J]. 畜牧兽医学报, 2022, 53 (12): 4123- 4137.
doi: 10.11843/j.issn.0366-6964.2022.12.001 |
LIU J Q , HAO X D , WU L N , et al. Application of whole genome SNP genotyping technology in livestock and poultry genetics and breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4123- 4137.
doi: 10.11843/j.issn.0366-6964.2022.12.001 |
|
26 | 宋玉朴, 孙永峰, 冯自强, 等. SNP分型检测技术及其在畜禽遗传和育种中的应用研究进展[J]. 中国畜牧杂志, 2021, 57 (7): 37- 42. |
SONG Y P , SUN Y F , FENG Z Q , et al. Advances in SNP typing techniques and their application in genetic and breeding of livestock and poultry[J]. Chinese Journal of Animal Science, 2021, 57 (7): 37- 42. | |
27 |
胡紫平, 王立刚, 宗文成, 等. 基于基因组SNP和ROH的剑白香猪群体遗传结构解析[J]. 畜牧兽医学报, 2023, 54 (10): 4117- 4125.
doi: 10.11843/j.issn.0366-6964.2023.10.011 |
HU Z P , WANG L G , ZONG W C , et al. Genetic structure analysis of Jianbai Xiang pig population based on genomic SNP and ROH[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4117- 4125.
doi: 10.11843/j.issn.0366-6964.2023.10.011 |
|
28 |
PHILLIPS E , SASARMAN F , SINASAC D S , et al. D-2-hydroxyglutaric aciduria in a patient with speech delay due to a novel homozygous deletion in the D2HGDH gene[J]. Mol Genet Metab Rep, 2019, 20, 100482.
doi: 10.1016/j.ymgmr.2019.100482 |
29 |
YANG J , ZHU H W , ZHANG T L , et al. Structure, substrate specificity, and catalytic mechanism of human D-2-HGDH and insights into pathogenicity of disease-associated mutations[J]. Cell Discov, 2021, 7 (1): 3.
doi: 10.1038/s41421-020-00227-0 |
30 |
DE GOEDE K E , HARBER K J , GORKI F S , et al. D-2-Hydroxyglutarate is an anti-inflammatory immunometabolite that accumulates in macrophages after TLR4 activation[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868 (9): 166427.
doi: 10.1016/j.bbadis.2022.166427 |
31 |
GERVAIS V , CAMPAGNE S , DURAND J , et al. NMR studies of a new family of DNA binding proteins: the THAP proteins[J]. J Biomol NMR, 2013, 56 (1): 3- 15.
doi: 10.1007/s10858-012-9699-1 |
32 |
RICHTER A , HOLLSTEIN R , HEBERT E , et al. In-depth characterization of the homodimerization domain of the transcription factor THAP1 and dystonia-causing mutations therein[J]. J Mol Neurosci, 2017, 62 (1): 11- 16.
doi: 10.1007/s12031-017-0904-2 |
33 |
SANGHAVI H M , MALLAJOSYULA S S , MAJUMDAR S . Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region[J]. BMC Struct Biol, 2019, 19 (1): 4.
doi: 10.1186/s12900-019-0102-2 |
34 |
SALLES F T , MERRITT R C JR , MANOR U , et al. Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments[J]. Nat Cell Biol, 2009, 11 (4): 443- 450.
doi: 10.1038/ncb1851 |
35 |
MERRITT R C , MANOR U , SALLES F T , et al. Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions[J]. Curr Biol, 2012, 22 (4): 320- 325.
doi: 10.1016/j.cub.2011.12.053 |
36 |
EBRAHIM S , AVENARIUS M R , GRATI M , et al. Stereocilia-staircase spacing is influenced by myosin Ⅲ motors and their cargos espin-1 and espin-like[J]. Nat Commun, 2016, 7, 10833.
doi: 10.1038/ncomms10833 |
37 |
KURZ S G , HANSEN K K , MCLAUGHLIN M T , et al. Tissue-specific actions of the Ept1, Ept2, Ept6, and Ept9 genetic determinants of responsiveness to estrogens in the female rat[J]. Endocrinology, 2008, 149 (8): 3850- 3859.
doi: 10.1210/en.2008-0173 |
38 | AHMED M Y , AL-KHAYAT A , AL-MURSHEDI F , et al. A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis[J]. Brain, 2017, 140 (3): 547- 554. |
39 |
CHEN Y L , JIANG H G , ZHAN Z K , et al. Restoration of lipid homeostasis between TG and PE by the LXRα-ATGL/EPT1 axis ameliorates hepatosteatosis[J]. Cell Death Dis, 2023, 14 (2): 85.
doi: 10.1038/s41419-023-05613-6 |
40 |
高广亮, 张克山, 赵献芝, 等. 全基因组关联分析筛选鹅蛋品质相关分子标记[J]. 中国农业科学, 2023, 56 (19): 3894- 3904.
doi: 10.3864/j.issn.0578-1752.2023.19.015 |
GAO G L , ZHANG K S , ZHAO X Z , et al. Identification of molecular markers associated with goose egg quality through genome-wide association analysis[J]. Scientia Agricultura Sinica, 2023, 56 (19): 3894- 3904.
doi: 10.3864/j.issn.0578-1752.2023.19.015 |
|
41 |
BAYER M , BOLLER S , RAMAMOOTHY S , et al. Tnpo3 enables EBF1 function in conditions of antagonistic Notch signaling[J]. Genes Dev, 2022, 36 (15-16): 901- 915.
doi: 10.1101/gad.349696.122 |
42 |
COSTA R , RODIA M T , PACILIO S , et al. LGMD D2 TNPO3-related: from clinical spectrum to pathogenetic mechanism[J]. Front Neurol, 2022, 13, 840683.
doi: 10.3389/fneur.2022.840683 |
43 |
POYATOS-GARCÍA J , BLÁZQUEZ-BERNAL Á , SELVA-GIMÉNEZ M , et al. CRISPR-Cas9 editing of a TNPO3 mutation in a muscle cell model of limb-girdle muscular dystrophy type D2[J]. Mol Ther Nucleic Acids, 2023, 31, 324- 338.
doi: 10.1016/j.omtn.2023.01.004 |
44 |
COSTA R , RODIA M T , ZINI N , et al. Morphological study of TNPO3 and SRSF1 interaction during myogenesis by combining confocal, structured illumination and electron microscopy analysis[J]. Mol Cell Biochem, 2021, 476 (4): 1797- 1811.
doi: 10.1007/s11010-020-04023-y |
45 |
DAY-WILLIAMS A G , SOUTHAM L , PANOUTSOPOULOU K , et al. A variant in MCF2L is associated with osteoarthritis[J]. Am J Hum Genet, 2011, 89 (3): 446- 450.
doi: 10.1016/j.ajhg.2011.08.001 |
46 | 许永权, 张金山, 施纯南, 等. 骨性关节炎相关基因MCF2L可增加滑膜成纤维细胞凋亡及诱导炎症反应[J]. 基因组学与应用生物学, 2017, 36 (6): 2137- 2142. |
XU Y Q , ZHANG J S , SHI C N , et al. Osteoarthritis related genes MCF2L could increase apoptosis of synovial fibroblastsand induce inflammatory response[J]. Genomics and Applied Biology, 2017, 36 (6): 2137- 2142. | |
47 |
YANG L , LI Y Y , LING X X , et al. A common genetic variant (97906C>A) of DAB2IP/AIP1 is associated with an increased risk and early onset of lung cancer in Chinese males[J]. PLoS One, 2011, 6 (10): e26944.
doi: 10.1371/journal.pone.0026944 |
48 |
LI Z , LI L , ZHANG H F , et al. Short AIP1 (ASK1-interacting protein-1) isoform localizes to the mitochondria and promotes vascular dysfunction[J]. Arterioscler Thromb Vasc Biol, 2020, 40 (1): 112- 127.
doi: 10.1161/ATVBAHA.119.312976 |
49 |
LI Q Y , HUA X , LI L P , et al. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model[J]. Cell Commun Signal, 2022, 20 (1): 59.
doi: 10.1186/s12964-022-00877-5 |
[1] | 张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900. |
[2] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[3] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[4] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
[5] | 李柯安宁, 杜丽丽, 安炳星, 邓天宇, 梁忙, 曹晟, 杜悦莹, 徐凌洋, 高雪, 张路培, 李俊雅, 高会江. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676. |
[6] | 张笑科, 廖伟莉, 陈信佑, 李婷婷, 袁晓龙, 李加琪, 黄翔, 张豪. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54(5): 1868-1876. |
[7] | 吴骏, 蔡晓钿, 林清, 钟展明, 叶浩强, 魏趁, 徐志婷, 吴细波, 司景磊, 张哲, 李加琪. 大白猪眼肌面积、估计瘦肉率和背膘厚的加权一步法全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(4): 1403-1414. |
[8] | 张高猛, 丁纪强, 刘昱宏, 郑麦青, 文杰, 赵桂苹, 李庆贺. 全基因组关联分析揭示白羽肉鸡孵化性状的遗传基础[J]. 畜牧兽医学报, 2023, 54(2): 534-544. |
[9] | 范晨宇, 单艳菊, 章明, 姬改革, 巨晓军, 屠云洁, 贺喜, 束婧婷, 刘一帆, 张海涵. 立华麻黄鸡体重和肉品质性状全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(12): 4982-4992. |
[10] | 赵雪洋, 李丹妮, 王钰晨, 郭磊, 王丽, 黄杰, 焦仪强, 安小鹏, 张希云, 张磊, 宋宇轩. 东湖杂交羊产羔性状的GWAS分析及候选基因GRID2的验证[J]. 畜牧兽医学报, 2023, 54(11): 4625-4635. |
[11] | 张昌政, 李德森, 黄敏, 方晓敏, 赵为民, 任守文, 董焕声, 任军, 周李生. 基于全基因组填充重测序关联分析鉴别影响苏山猪初生体尺与乳头数性状的遗传位点[J]. 畜牧兽医学报, 2023, 54(1): 88-102. |
[12] | 吴平先, 陈力, 龙熙, 柴捷, 张廷焕, 徐顺来, 郭宗义, 王金勇. 荣昌猪初产繁殖性状的全基因组关联研究[J]. 畜牧兽医学报, 2023, 54(1): 103-112. |
[13] | 马丽霞, 曹国伟, 朱红芳, 邓占钊, 蔡正云, 周成浩, 韩威, 顾亚玲, 张娟. 基于RAD-seq静原鸡保种群体的遗传变异分析[J]. 畜牧兽医学报, 2022, 53(7): 2104-2117. |
[14] | 李宏伟, 徐凌洋, 王泽昭, 蔡文涛, 朱波, 陈燕, 高雪, 张路培, 高会江, 李俊雅. 基于单倍型肉牛屠宰性状全基因组关联分析研究[J]. 畜牧兽医学报, 2022, 53(12): 4232-4243. |
[15] | 杜永旺, 黄超, 王一东, 李森, 文杰, 陈智武, 赵桂苹, 郑麦青. 结合GWAS先验标记信息的肉鸡RFI性状全基因组选择研究[J]. 畜牧兽医学报, 2022, 53(10): 3403-3411. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||