畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (3): 855-867.doi: 10.11843/j.issn.0366-6964.2023.03.001
金美林1,2, 李桃桃1, 孙东晓2*, 魏彩虹1*
收稿日期:
2022-08-30
出版日期:
2023-03-23
发布日期:
2023-03-21
通讯作者:
孙东晓,主要从事动物分子数量遗传学与奶牛育种研究,E-mail:sundx@cau.edu.cn;魏彩虹,主要从事肉羊遗传育种与繁殖研究,E-mail:weicaihong@caas.cn
作者简介:
金美林(1996-),女,安徽安庆人,博士生,主要从事肉羊遗传育种与繁殖研究,E-mail:jmlingg@163.com
基金资助:
JIN Meilin1,2, LI Taotao1, SUN Dongxiao2*, WEI Caihong1*
Received:
2022-08-30
Online:
2023-03-23
Published:
2023-03-21
摘要: 表观遗传学是DNA序列没有发生改变,基因表达和表型产生可遗传的变化。前期研究发现,表观遗传调控参与多种生命活动过程,在脂肪沉积过程中也发挥重要的作用。脂肪沉积影响畜禽肉品质,研究脂肪沉积机制是畜禽育种中的一个重要方面。因此,本文从DNA甲基化、mRNA修饰、组蛋白修饰、染色体重塑和非编码RNA调控五个方面展开对畜禽脂肪沉积机制中研究进展的综述。
中图分类号:
金美林, 李桃桃, 孙东晓, 魏彩虹. 表观遗传调控在畜禽脂肪沉积机制中的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 855-867.
JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867.
[1] | DUPONT C,ARMANT D R,BRENNER C A.Epigenetics:definition,mechanisms and clinical perspective[J].Semin Reprod Med, 2009,27(5):351-357. |
[2] | HEARD E,MARTIENSSEN R A.Transgenerational epigenetic inheritance:myths and mechanisms[J].Cell,2014,157(1):95-109. |
[3] | 宋敏艳,俞英.畜禽表观遗传学主要研究领域及研究进展[J].中国畜牧兽医,2016,43(10):2701-2709.SONG M Y,YU Y.The main research fields and progress of livestock epigenetics[J].China Animal Husbandry&Veterinary Medicine,2016,43(10):2701-2709.(in Chinese) |
[4] | PETERS J,BEECHEY C.Identification and characterisation of imprinted genes in the mouse[J].Brief Funct Genomic Proteomic,2004,2(4):320-333. |
[5] | GLASER J,IRANZO J,BORENSZTEIN M,et al.The imprinted Zdbf2 gene finely tunes control of feeding and growth in neonates[J].eLife,2022,11:e65641. |
[6] | HILTENSPERGER M,BELTRÁN E,KANT R,et al.Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity[J].Nat Immunol,2021,22(7):880-892. |
[7] | MAGEE D A,SIKORA K M,BERKOWICZ E W,et al.DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle[J].BMC Genet,2010,11:93. |
[8] | 宋兴亚,彭巍,刘贤,等.m6A甲基化修饰及其影响动物脂肪生成的分子机制研究进展[J].中国畜牧杂志,2022, 58(10):53-58.SONG X Y,PENG W,LIU X,et al.The research progress in methylation modification of m6A and its molecular mechanism affecting the adipogenesis of animals[J].Chinese Journal of Animal Science,2022,58(10):53-58.(in Chinese) |
[9] | FUJIKI K,KANO F,SHIOTA K,et al.Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes[J].BMC Biol,2009,7:38. |
[10] | JIANG Y D,LIU Z H,XIONG J T,et al.Homocysteine-mediated PPARα,γ DNA methylation and its potential pathogenic mechanism in monocytes[J].DNA Cell Biol,2008,27(3):143-150. |
[11] | 黄琪,陈瑞,梁凤霞.肥胖的遗传基因与表观遗传修饰机制[J].华中科技大学学报:医学版,2018,47(5):644-647.HUANG Q,CHEN R,LIANG F X.Genetic and epigenetic modification mechanisms of obesity[J].Acta Medicinae Universitatis Scientiae et Technologiae Huazhong,2018,47(5):644-647.(in Chinese) |
[12] | LIM Y C,CHIA S Y,JIN S N,et al.Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis[J].Mol Metab,2016,5(10):1033-1041. |
[13] | 薛江东.沙葱水提物影响肉羊肌肉和脂肪组织中脂肪酸组成的表观遗传机理研究[D].呼和浩特:内蒙古农业大学,2020.XUE J D.Epigenetic mechanism of water soluble extract from allium mongolicum regel affecting on fatty acidcomposition inmuscle and adipose tissue of mutton sheep[D].Hohhot:Inner Mongolia Agricultural University,2020.(in Chinese) |
[14] | LAW P P,HOLLAND M L.DNA methylation at the crossroads of gene and environment interactions[J].Essays Biochem,2019, 63(6):717-726. |
[15] | PALOU-MÁRQUEZ G,SUBIRANA I,NONELL L,et al.DNA methylation and gene expression integration in cardiovascular disease[J].Clin Epigenetics,2021,13(1):75. |
[16] | MONK D,MACKAY D J G,EGGERMANN T,et al.Genomic imprinting disorders:lessons on how genome,epigenome and environment interact[J].Nat Rev Genet,2019,20(4):235-248. |
[17] | LI B,HU P,ZHU L B,et al.DNA methylation is correlated with gene expression during diapause termination of early embryonic development in the silkworm (Bombyx mori)[J].Int J Mol Sci,2020,21(2):671. |
[18] | LIANG W H,ZHAO Y,HUANG W Z,et al.Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA)[J].Theranostics,2019,9(7):2056-2070. |
[19] | LIU Y D,ZHANG Y P,YIN J P,et al.Distinct H3K9 me3 and DNA methylation modifications during mouse spermatogenesis[J].J Biol Chem,2019,294(49):18714-18725. |
[20] | CHAPMAN A B,KNIGHT D M,DIECKMANN B S,et al.Analysis of gene expression during differentiation of adipogenic cells in culture and hormonal control of the developmental program[J].J Biol Chem,1984,259(24):15548-15555. |
[21] | ZHANG S H,SHEN L Y,XIA Y D,et al.DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs[J].Sci Rep,2016,6:35063. |
[22] | GAO Y,SUN Y N,DUAN K,et al.CpG site DNA methylation of the CCAAT/enhancer-binding protein,alpha promoter in chicken lines divergently selected for fatness[J].Anim Genet,2015,46(4):410-417. |
[23] | HONG J Y,MEI C G,LI S J,et al.Coordinate regulation by transcription factors and DNA methylation in the core promoter region of SIRT6 in bovine adipocytes[J].Arch Biochem Biophys,2018,659:1-12. |
[24] | SHARP P A.The centrality of RNA[J].Cell,2009,136(4):577-580. |
[25] | FANG Q X,CHEN H S.The significance of m6A RNA methylation regulators in predicting the prognosis and clinical course of HBV-related hepatocellular carcinoma[J].Mol Med,2020,26(1):60. |
[26] | 庞立川,刘一帆,章明,等.家禽m6A修饰研究进展[J].黑龙江畜牧兽医,2022(13):37-41.PANG L C,LIU Y F,ZHANG M,et al.Research progress of N6-methyladenosine modification in poultry[J].Heilongjiang Animal Science and Veterinary Medicine,2022(13):37-41.(in Chinese) |
[27] | LI Y,GU J,XU F K,et al.Molecular characterization,biological function,tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma[J].Brief Bioinform,2021,22(4):bbaa225. |
[28] | QIN Y H,LI L Q,LUO E F,et al.Role of m6A RNA methylation in cardiovascular disease (Review)[J].Int J Mol Med,2020, 46(6):1958-1972. |
[29] | HU Y,FENG Y,ZHANG L C,et al.GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs[J].RNA Biol,2020,17(7):930-942. |
[30] | ZHANG Y,GUO F,ZHAO R.Hepatic expression of FTO and fatty acid metabolic genes changes in response to lipopolysaccharide with alterations in m6A modification of relevant mRNAs in the chicken[J].Br Poult Sci,2016, 57(5):628-635. |
[31] | 史源钧,米思远,俞英.m6A表观遗传修饰及其调控机制研究进展[J].中国畜牧兽医,2022,49(1):197-207.SHI Y J,MI S Y,YU Y.Research progress on m6A epigenetic modification and its regulation mechanism[J].China Animal Husbandry&Veterinary Medicine,2022,49(1):197-207.(in Chinese) |
[32] | KOUZARIDES T.Chromatin modifications and their function[J].Cell,2007,128(4):693-705. |
[33] | JAMBHEKAR A,DHALL A,SHI Y.Roles and regulation of histone methylation in animal development[J].Nat Rev Mol Cell Biol,2019,20(10):625-641. |
[34] | DAI X F,LV X Y,THOMPSON E W,et al.Histone lactylation:epigenetic mark of glycolytic switch[J].Trends Genet,2022, 38(2):124-127. |
[35] | HSIEH W C,SUTTER B M,RUESS H,et al.Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes[J].Mol Cell,2022,82(1):60-74.e5. |
[36] | KOCIUCKA B,STACHECKA J,SZYDLOWSKI M,et al.Rapid Communication:The correlation between histone modifications and expression of key genes involved in accumulation of adipose tissue in the pig[J].J Anim Sci,2017,95(10):4514-4519. |
[37] | ZHU Y L,ZENG Q J,LI F,et al.Dysregulated H3K27 acetylation is implicated in fatty liver hemorrhagic syndrome in chickens[J]. Front Genet,2021,11:574167. |
[38] | HE S,WU Z H,TIAN Y,et al.Structure of nucleosome-bound human BAF complex[J].Science,2020,367(6480):875-881. |
[39] | YANG M Z,YU H W,YU X,et al.Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells[J].Cell Stem Cell,2022,29(3):400-418.e13. |
[40] | LEE Y S,SOHN D H,HAN D,et al.Chromatin remodeling complex interacts with ADD1/SREBP1c to mediate insulin-dependent regulation of gene expression[J].Mol Cell Biol,2007,27(2):438-452. |
[41] | SIERSBEK R,NIELSEN R,JOHN S,et al.Extensive chromatin remodelling and establishment of transcription factor'hotspots'during early adipogenesis[J].EMBO J,2011,30(8):1459-1472. |
[42] | LEE J E,GE K.Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis[J].Cell Biosci,2014,4:29. |
[43] | ESTELLER M.Non-coding RNAs in human disease[J].Nat Rev Genet,2011,12(12):861-874. |
[44] | BARTEL D P.MicroRNAs:Target recognition and regulatory functions[J].Cell,2009,136(2):215-233. |
[45] | VIENBERG S,GEIGER J,MADSEN S,et al.MicroRNAs in metabolism[J].Acta Physiol,2017,219(2):346-361. |
[46] | MCGREGOR R A,CHOI M S.MicroRNAs in the regulation of adipogenesis and obesity[J].Curr Mol Med,2011,11(4):304-316. |
[47] | ALEXANDER R,LODISH H,SUN L.MicroRNAs in adipogenesis and as therapeutic targets for obesity[J].Expert Opin Ther Targets,2011,15(5):623-636. |
[48] | BRIDGES M C,DAULAGALA A C,KOURTIDIS A.LNCcation:lncRNA localization and function[J].J Cell Biol,2021, 220(2):e202009045. |
[49] | GAO J N,CHEN X T,SHAN C,et al.Autophagy in cardiovascular diseases:role of noncoding RNAs[J].Mol Ther Nucleic Acids, 2021, 23:101-118. |
[50] | CHEN L,WANG C L,SUN H Y,et al.The bioinformatics toolbox for circRNA discovery and analysis[J].Brief Bioinform, 2021, 22(2):1706-1728. |
[51] | LI M Z,WANG T,WU H L,et al.Genome-wide DNA methylation changes between the superficial and deep backfat tissues of the pig[J].Int J Mol Sci,2012,13(6):7098-7108. |
[52] | BAIK M,VU T T T,PIAO M Y,et al.Association of DNA methylation levels with tissue-specific expression of adipogenic and lipogenic genes in Longissimus dorsi muscle of Korean cattle[J].Asian-Australas J Anim Sci,2014,27(10):1493-1498. |
[53] | KUANG J Y,CHEN L,TANG Q,et al.The role of Sirt6 in obesity and diabetes[J].Front Physiol,2018,9:135. |
[54] | WANG X X,ZHU L N,CHEN J Q,et al.mRNA m6A methylation downregulates adipogenesis in porcine adipocytes[J].Biochem Biophys Res Commun,2015,459(2):201-207. |
[55] | TAO X L,CHEN J N,JIANG Y Z,et al.Transcriptome-wide N6-methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern[J].BMC Genomics,2017,18(1):336. |
[56] | WANG X X,WU R F,LIU Y H,et al.m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7[J]. Autophagy,2020,16(7):1221-1235. |
[57] | HENG J H,WU Z H,TIAN M,et al.Excessive BCAA regulates fat metabolism partially through the modification of m6A RNA methylation in weanling piglets[J].Nutr Metab (Lond),2020,17:10. |
[58] | CHENG B H,LENG L,LI Z W,et al.Profiling of RNA N6-methyladenosine methylation reveals the critical role of m6A in chicken adipose deposition[J].Front Cell Dev Biol,2021,9:590468. |
[59] | WANG W S,DU Z Q,CHENG B H,et al.Expression profiling of preadipocyte microRNAs by deep sequencing on chicken lines divergently selected for abdominal fatness[J].PLoS One,2015,10(2):e0117843. |
[60] | ABDALLA B A,CHEN J,NIE Q H,et al.Genomic insights into the multiple factors controlling abdominal fat deposition in a chicken model[J].Front Genet,2018,9:262. |
[61] | GU Z L,ELESWARAPU S,JIANG H L.Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland[J].FEBS Lett,2007,581(5):981-988. |
[62] | ZHANG J S,XU H Y,FANG J C,et al.Integrated microRNA-mRNA analysis reveals the roles of microRNAs in the muscle fat metabolism of Yanbian cattle[J].Anim Genet,2021,52(5):598-607. |
[63] | CHEN X Y,RAZA S H A,CHENG G,et al.Bta-miR-376a targeting KLF15 interferes with adipogenesis signaling pathway to promote differentiation of Qinchuan beef cattle preadipocytes[J].Animals (Basel),2020,10(12):2362. |
[64] | HUANG K L,SHI X E,WANG J,et al.Upregulated microRNA-106a promotes porcine preadipocyte proliferation and differentiation by targeting different genes[J].Genes (Basel),2019,10(10):805. |
[65] | LIU H D,LI B J,QIAO L Y,et al.miR-340-5p inhibits sheep adipocyte differentiation by targeting ATF7[J].Anim Sci J,2020, 91(1):e13462. |
[66] | FEI X J,JIN M L,WANG Y Q,et al.Transcriptome reveals key microRNAs involved in fat deposition between different tail sheep breeds[J].PLoS One,2022,17(3):e0264804. |
[67] | JIN M L,FEI X J,LI T T,et al.Oar-miR-432 regulates fat differentiation and promotes the expression of BMP2 in ovine preadipocytes[J].Front Genet,2022,13:844747. |
[68] | CHAO X H,GUO L J,WANG Q,et al.miR-429-3p/LPIN1 axis promotes chicken abdominal fat deposition via PPARγ pathway[J].Front Cell Dev Biol,2020,8:595637. |
[69] | SUN G R,LI F,MA X F,et al.gga-miRNA-18b-3p inhibits intramuscular adipocytes differentiation in chicken by targeting the ACOT13 gene[J].Cells,2019,8(6):556. |
[70] | LI G X,CHEN Y,JIN W J,et al.Effects of miR-125b-5p on preadipocyte proliferation and differentiation in chicken[J].Mol Biol Rep,2021,48(1):491-502. |
[71] | TIAN W H,HAO X,NIE R X,et al.Integrative analysis of miRNA and mRNA profiles reveals that gga-miR-106-5p inhibits adipogenesis by targeting the KLF15 gene in chickens[J].J Anim Sci Biotechnol,2022,13(1):81. |
[72] | HUANG H Y,LIU R R,ZHAO G P,et al.Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens[J].Sci Rep,2015,5:16132. |
[73] | LIN Z Z,TANG Y,LI Z Q,et al.miR-24-3p dominates the proliferation and differentiation of chicken intramuscular preadipocytes by blocking ANXA6 expression[J].Genes (Basel),2022,13(4):635. |
[74] | XU Q,CHEN J,LIU X M,et al.miR-F4-C12 functions on the regulation of adipose accumulation by targeting PIK3R1 in castrated male pigs[J].Animals (Basel),2021,11(11):3053. |
[75] | WANG Q,CAO H,SU X H,et al.Identification of key miRNAs regulating fat metabolism based on RNA-seq from fat-tailed sheep and F2 of wild Argali[J].Gene,2022,834:146660. |
[76] | LIU J H,LIANG Y,QIAO L Y,et al.MiR-128-1-5p regulates differentiation of ovine stromal vascular fraction by targeting the KLF11 5'-UTR[J].Domest Anim Endocrinol,2022,80:106711. |
[77] | WANG Q,PAN Y,ZHAO B,et al.MiR-33a inhibits the adipogenic differentiation of ovine adipose-derived stromal vascular fraction cells by targeting SIRT6[J].Domest Anim Endocrinol,2021,74:106513. |
[78] | XU H Y,SHAO J,FANG J C,et al.miR-381 targets KCTD15 to regulate bovine preadipocyte differentiation in vitro[J].Horm Metab Res,2021,53(1):63-70. |
[79] | BAI J H,XU H Y,FANG J C,et al.miR-15a regulates the preadipocyte differentiation by targeting ABAT gene in Yanbian yellow cattle[J].Anim Biotechnol,2022:1-10. |
[80] | XU H Y,SHAO J,YIN B Z,et al.Bovine bta-microRNA-1271 promotes preadipocyte differentiation by targeting activation transcription factor 3[J].Biochemistry (Mosc),2020,85(7):749-757. |
[81] | LI D W,WANG H,LI Y M,et al.MicroRNA-378 regulates adipogenic differentiation in bovine intramuscular preadipocytes by targeting CaMKK2[J].Adipocyte,2021,10(1):483-492. |
[82] | ZHANG Y Y,WANG Y N,WANG H B,et al.MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL[J].Mol Cell Probes,2019,44:29-36. |
[83] | MA X Y,WEI D W,CHENG G,et al.Bta-miR-130a/b regulates preadipocyte differentiation by targeting PPARG and CYP2U1 in beef cattle[J].Mol Cell Probes,2018,42:10-17. |
[84] | REN L,LI Q,HU X,et al.A novel mechanism of bta-miR-210 in bovine early intramuscular adipogenesis[J].Genes (Basel), 2020,11(6):601. |
[85] | WANG S Z,PAN C L,MA X J,et al.Identification and functional verification reveals that miR-195 inhibiting THRSP to affect fat deposition in Xinyang buffalo[J].Front Genet,2021,12:736441. |
[86] | ZHANG T,ZHANG X Q,HAN K P,et al.Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken[J].G3(Bethesda),2017,7(3):953-966. |
[87] | LI M X,SUN X M,CAI H F,et al.Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204[J].Biochim Biophys Acta,2016,1859(7):871-882. |
[88] | HUANG W,ZHANG X,LI A,et al.Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds[J].Cell Physiol Biochem,2018,50(6):2406-2422. |
[89] | YI X D,HE Z Z,TIAN T T,et al.LncIMF2 promotes adipogenesis in porcine intramuscular preadipocyte through sponging MiR-217[J].Anim Biotechnol,2021:1-12. |
[90] | MA L,ZHANG M,JIN Y Y,et al.Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep[J].Front Genet,2018,9:365. |
[91] | CAI H F,LI M X,JIAN W,et al.A novel lncRNA BADLNCR1 inhibits bovine adipogenesis by repressing GLRX5 expression[J].J Cell Mol Med,2020,24(13):7175-7186. |
[92] | ZHANG M,MA X F,ZHAI Y H,et al.Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis[J].J Agric Food Chem,2020,68(11):3678-3688. |
[93] | CHEN Y F,ZHAO S J,DING R,et al.Identification of a long noncoding RNA (lncPRDM16) inhibiting preadipocyte proliferation in the chicken[J].J Agric Food Chem,2022,70(4):1335-1345. |
[94] | GUO L J,CHAO X H,HUANG W L,et al.Whole transcriptome analysis reveals a potential regulatory mechanism of lncRNA-FNIP2/miR-24-3p/FNIP2 axis in chicken adipogenesis[J].Front Cell Dev Biol,2021,9:653798. |
[95] | ZHANG M,LI F,SUN J W,et al.incRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p[J].Front Genet,2019,10:42. |
[96] | ZHANG S H,KANG Z H,CAI H F,et al.Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation[J].J Cell Physiol,2021,236(1):601-611. |
[97] | LI M X,GAO Q S,TIAN Z C,et al.MIR221HG is a novel long noncoding RNA that inhibits bovine adipocyte differentiation[J]. Genes (Basel),2020,11(1):29. |
[98] | WANG H,ZHONG J C,ZHANG C F,et al.The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak[J].BMC Genomics,2020,21(1):347. |
[99] | SU X H,HE H Y,FANG C,et al.Transcriptome profiling of LncRNAs in sheep tail fat deposition[J].Anim Biotechnol,2021:1-11. |
[100] | HE C S,WANG Y,ZHU J J,et al.Integrative analysis of lncRNA-miRNA-mRNA regulatory network reveals the key lncRNAs implicated potentially in the differentiation of adipocyte in goats[J].Front Physiol,2022,13:900179. |
[101] | SUN Y M,CAI R,WANG Y Q,et al.A newly identified LncRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis[J].Animals (Basel),2020,10(6):926. |
[102] | ZHANG D W,WU W J,HUANG X,et al.Comparative analysis of gene expression profiles in differentiated subcutaneous adipocytes between Jiaxing Black and Large White pigs[J].BMC Genomics,2021,22(1):61. |
[103] | JIANG Q Y,ZHANG S B,GAO X T,et al.Resveratrol inhibits proliferation and differentiation of porcine preadipocytes by a novel LincRNA-ROFM/miR-133b/AdipoQ pathway[J].Foods,2022,11(17):2690. |
[104] | JIN W J,ZHAO Y L,ZHAI B,et al.Characteristics and expression profiles of circRNAs during abdominal adipose tissue development in Chinese Gushi chickens[J].PLoS One,2021,16(4):e0249288. |
[105] | ZHANG Y F,GUO X,PEI J,et al.CircRNA expression profile during yak adipocyte differentiation and screen potential circRNAs for adipocyte differentiation[J].Genes (Basel),2020,11(4):414. |
[106] | FENG X,ZHAO J H,LI F,et al.Weighted gene co-expression network analysis revealed that circMARK3 is a potential circRNA affects fat deposition in buffalo[J].Front Vet Sci,2022,9:946447. |
[107] | ZHANG M,HAN Y,ZHAI Y H,et al.Integrative analysis of circRNAs,miRNAs,and mRNAs profiles to reveal ceRNAs networks in chicken intramuscular and abdominal adipogenesis[J].BMC Genomics,2020,21(1):594. |
[108] | SHEN X M,ZHANG X Y,RU W X,et al.circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a[J].Mol Ther Nucleic Acids,2020,19:986-999. |
[109] | SHEN X M,TANG J,RU W X,et al.CircINSR regulates fetal bovine muscle and fat development[J].Front Cell Dev Biol, 2021, 8:615638. |
[110] | KANG Z H,ZHANG S H,JIANG E H,et al.circFLT1 and lncCCPG1 sponges miR-93 to regulate the proliferation and differentiation of adipocytes by promoting lncSLC30A9 expression[J].Mol Ther Nucleic Acids,2020,22:484-499. |
[111] | LI H,YANG J M,WEI X F,et al.CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J].J Cell Physiol,2018,233(6):4643-4651. |
[112] | LI H,WEI X F,YANG J M,et al.circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a[J].Mol Ther Nucleic Acids,2018,11:272-283. |
[113] | CHEN Z,LU Q Y,LIANG Y S,et al.Circ11103 interacts with miR-128/PPARGC1A to regulate milk fat metabolism in dairy cows[J].J Agric Food Chem,2021,69(15):4490-4500. |
[114] | ZHANG M,LI C C,LI F,et al.Estrogen promotes hepatic synthesis of long-chain polyunsaturated fatty acids by regulating ELOVL5 at post-transcriptional level in laying hens[J].Int J Mol Sci,2017,18(7):1405. |
[115] | 冯雪,赵金辉,汪书哲,等.过表达circNMT1促进水牛脂肪细胞的成脂分化[J].畜牧兽医学报,2022,53(4):1077-1088.FENG X,ZHAO J H,WANG S Z,et al.Overexpression of circNMT1 promotes adipogenic differentiation of buffalo adipocytes[J]. Acta Veterinaria et Zootechnica Sinica,2022,53(4):1077-1088.(in Chinese) |
[116] | LI B J,HE Y,WU W J,et al.Circular RNA profiling identifies novel circPPARA that promotes intramuscular fat deposition in pigs[J].J Agric Food Chem,2022,70(13):4123-4137. |
[117] | LIU X M,BAI Y,CUI R,et al.Sus_circPAPPA2 regulates fat deposition in castrated pigs through the miR-2366/GK pathway[J].Biomolecules,2022,12(6):753. |
[118] | ZHAO L,ZHOU L S,HAO X J,et al.Identification and characterization of circular RNAs in association with the deposition of intramuscular Fat in Aohan fine-wool sheep[J].Front Genet,2021,12:759747. |
[1] | 张为, 潘志豪, 方富贵. 表观遗传学调控雌性动物初情期启动的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1875-1882. |
[2] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[3] | 张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55(4): 1511-1520. |
[4] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[5] | 申琦, 王凯, 赵真坚, 陈栋, 余杨, 崔晟頔, 王俊戈, 陈子旸, 吴平先, 唐国庆. NOS2基因DNA甲基化编辑调节NO浓度影响肌肉发育通路基因的表达[J]. 畜牧兽医学报, 2024, 55(3): 984-994. |
[6] | 韩皓哲, 帖子航, 庞卫军, 蔡瑞. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3605-3612. |
[7] | 张琰, 刘佳悦, 吴梅金, 周家豪, 刁洪秀. 非编码RNA作为犬肿瘤潜在生物标志物的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2264-2271. |
[8] | 杨小耿, 张慧珠, 李键, 向华, 何翃闳. DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 443-450. |
[9] | 宋淑珍, 刘俊斌, 朱才业, 徐红伟, 刘立山, 孔艳龙. 断尾对兰州大尾羊生长性能、脂肪沉积分布和屠宰性能的影响[J]. 畜牧兽医学报, 2023, 54(2): 642-655. |
[10] | 张宸艺博, 余彤, 任斌斌, 郑睿智, 朱文治, 苏建民. 动物早期胚胎发育中表观重编程的机制[J]. 畜牧兽医学报, 2023, 54(12): 4898-4909. |
[11] | 马子明, 郭星汝, 戴天姝, 魏士昊, 史远刚, 淡新刚. 牛子宫复旧调控机制及促进子宫复旧方法的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 58-68. |
[12] | 翟丽维, 赵延辉, 李文军, 邢凯, 王楚端. 系统分析多组织转录组鉴定影响猪脂肪沉积的关键基因[J]. 畜牧兽医学报, 2022, 53(6): 1702-1711. |
[13] | 王迪, 俞英. 奶牛金葡菌乳房炎抗性的转录组及表观遗传学研究进展[J]. 畜牧兽医学报, 2022, 53(2): 329-338. |
[14] | 甘建宇, 张芯, 蔡更元, 洪林君, 黄思秀. DNA甲基化在猪胚胎发育过程中的研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3287-3295. |
[15] | 李雄, 田念念, 宋林锦, 陈晨, 许厚强. 5-Aza-dC对牛成肌细胞MyoD1启动子甲基化及mRNA表达的影响[J]. 畜牧兽医学报, 2021, 52(9): 2439-2451. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||