畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (12): 4898-4909.doi: 10.11843/j.issn.0366-6964.2023.12.002
张宸艺博, 余彤, 任斌斌, 郑睿智, 朱文治, 苏建民*
收稿日期:
2023-03-23
出版日期:
2023-12-23
发布日期:
2023-12-26
通讯作者:
苏建民,主要从事动物胚胎发育机制研究,E-mail:sujm@nwafu.edu.cn
作者简介:
张宸艺博(2001-),男,河北石家庄人,硕士生,主要从事动物胚胎发育机制研究,E-mail:zhangchenyibo@nwafu.edu.cn
基金资助:
ZHANG Chenyibo, YU Tong, REN Binbin, ZHENG Ruizhi, ZHU Wenzhi, SU Jianmin*
Received:
2023-03-23
Online:
2023-12-23
Published:
2023-12-26
摘要: 哺乳动物早期胚胎发育过程中,受精卵经历了一系列表观遗传重编程事件,去除了雌雄原核的表观遗传记忆,从而建立了胚胎的全能性。然而,这些重编程事件的进行必须受到种属特异性的精确调控,而相关的调控机制仍需进一步研究。随着分子生物学技术的不断发展,特别是微量全基因组染色质分析技术的突破性进展,哺乳动物早期胚胎发育中的表观遗传重编程调控网络研究取得了重大进展。本文旨在介绍模式动物和多种家畜的表观遗传重编程机制的进展,包括DNA甲基化、组蛋白修饰、染色质开放性和染色质三维结构等方面的研究。
中图分类号:
张宸艺博, 余彤, 任斌斌, 郑睿智, 朱文治, 苏建民. 动物早期胚胎发育中表观重编程的机制[J]. 畜牧兽医学报, 2023, 54(12): 4898-4909.
ZHANG Chenyibo, YU Tong, REN Binbin, ZHENG Ruizhi, ZHU Wenzhi, SU Jianmin. Mechanism of Epigenetic Reprogramming of Early Animal Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4898-4909.
[1] MALIN K,WITKOWSKA-PIȽASZEWICZ O,PAPIS K.The many problems of somatic cell nuclear transfer in reproductive cloning of mammals[J].Theriogenology,2022,189:246-254. [2] 杨小耿,张慧珠,李键,等.DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J].畜牧兽医学报,2023, 54(2):443-450.YANG X G,ZHANG H Z,LI J,et al.Research progress of the DNA methylation in mammalian oocyte and early embryo development[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):443-450.(in Chinese) [3] YAN R,CHENG X,GU C,et al.Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development[J].Nat Genet,2023,55(1):130-143. [4] RICHARD ALBERT J,AU YEUNG W K,TORIYAMA K,et al.Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo[J].Nat Commun,2020,11(1):5417. [5] XU R M,LI C,LIU X Y,et al.Insights into epigenetic patterns in mammalian early embryos[J].Protein Cell,2021,12(1):7-28. [6] LI Y F,ZHANG Z Q,CHEN J Y,et al.Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J].Nature,2018,564(7734):136-140. [7] ZHANG C Y,WEN H,LIU S Y,et al.Maternal factor dppa3 activates 2C-like genes and depresses DNA methylation in mouse embryonic stem cells[J].Front Cell Dev Biol,2022,10:882671. [8] ECKERSLEY-MASLIN M A,ALDA-CATALINAS C,REIK W.Dynamics of the epigenetic landscape during the maternal-to-zygotic transition[J].Nat Rev Mol Cell Biol,2018,19(7):436-450. [9] LIU X,CHEN L,WANG T,et al.TDG is a pig-specific epigenetic regulator with insensitivity to H3K9 and H3K27 demethylation in nuclear transfer embryos[J].Stem Cell Rep,2021,16(11):2674-2689. [10] ZHANG Y,XIANG Y L,YIN Q Z,et al.Dynamic epigenomic landscapes during early lineage specification in mouse embryos[J]. Nat Genet,2018,50(1):96-105. [11] YANG H,BAI D D,LI Y H,et al.Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in pre-implantation embryo[J].Nat Cell Biol,2022,24(5):783-792. [12] GÓMEZ-REDONDO I,PLANELLS B,CÁNOVAS S,et al.Genome-wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline[J].Clin Epigenet,2021,13(1):27. [13] IVANOVA E,CANOVAS S,GARCIA-MARTÍNEZ S,et al.DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes[J].Clin Epigenet,2020,12(1):64. [14] NIEMANN H,CARNWATH J W,HERRMANN D,et al.DNA methylation patterns reflect epigenetic reprogramming in bovine embryos[J].Cell Reprogram,2010,12(1):33-42. [15] ARAND J,CHIANG H R,MARTIN D,et al.Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation[J].EMBO Rep,2022,23(2):e53968. [16] CLARK S J,ARGELAGUET R,LOHOFF T,et al.Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis[J].Genome Biol,2022,23(1):202. [17] 张德福,戴建军,吴彩凤,等.体细胞克隆技术及其存在的问题[J].上海农业学报,2016,32(3):168-171.ZHANG D F,DAI J J,WU C F,et al.Animal somatic cell cloning technique and its problems[J].Acta Agriculturae Shanghai,2016, 32(3):168-171.(in Chinese) [18] SU J M,WANG Y S,LIU Q,et al.Aberrant mRNA expression and DNA methylation levels of imprinted genes in cloned transgenic calves that died of large offspring syndrome[J].Livest Sci,2011,141(1):24-35. [19] ZENG Y,CHEN T P.DNA methylation reprogramming during mammalian development[J].Genes (Basel),2019,10(4):257. [20] SHILATIFARD A.Molecular implementation and physiological roles for histone H3 lysine 4(H3K4) methylation[J].Curr Opin Cell Biol,2008,20(3):341-348. [21] RUTHENBURG A J,ALLIS C D,WYSOCKA J.Methylation of lysine 4 on histone H3:intricacy of writing and reading a single epigenetic mark[J].Mol Cell,2007,25(1):15-30. [22] ANSARI K I,MANDAL S S.Mixed lineage leukemia:roles in gene expression,hormone signaling and mRNA processing[J]. FEBS J, 2010,277(8):1790-1804. [23] LI Y J,HAN J M,ZHANG Y B,et al.Structural basis for activity regulation of MLL family methyltransferases[J]. Nature,2016, 530(7591):447-452. [24] DAHL J A,JUNG I,AANES H,et al.Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition[J].Nature,2016,537(7621):548-552. [25] YAMAZAKI S,IKEDA S,MINAMI N.Comparative analysis of histone H3K27me3 modifications between blastocysts and somatic tissues in cattle[J].Anim Sci J,2022,93(1):e13684. [26] ZHANG B J,ZHENG H,HUANG B,et al.Allelic reprogramming of the histone modification H3K4me3 in early mammalian development[J].Nature,2016,537(7621):553-557. [27] WANG L,ZHANG J,DUAN J L,et al.Programming and inheritance of parental DNA methylomes in mammals[J].Cell,2014, 157(4):979-991. [28] DANG Y N,LUO L,SHI Y,et al.KDM5-mediated redistribution of H3K4me3 is required for oocyte-to-embryonic transition in cattle[J].Biol Reprod,2022,106(6):1059-1071. [29] HUANG J J,ZHANG H Y,WANG X L,et al.Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications[J].Biol Reprod,2015, 92(3):72. [30] LIU F M,WU D J,WANG X D.Roles of CTCF in conformation and functions of chromosome[J].Semin Cell Dev Biol,2019,90: 168-173. [31] HUANG X,GAO X D,LI W Y,et al.Stable H3K4me3 is associated with transcription initiation during early embryo development[J].Bioinformatics,2019,35(20):3931-3936. [32] LIU X Y.,WANG C F,LIU W Q,et al.Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos[J].Nature,2016,537(7621):558-562. [33] LU S C,MATO J M.S-adenosylmethionine in cell growth,apoptosis and liver cancer[J].J Gastroenterol Hepatol,2008,23(S1): S73-S77. [34] LI C Z,GUI G,ZHANG L,et al.Overview of methionine adenosyltransferase 2A (MAT2A) as an anticancer target:structure, function, and inhibitors[J].J Med Chem,2022,65(14):9531-9547. [35] SUN H Z,KANG J,SU J M,et al.Methionine adenosyltransferase 2A regulates mouse zygotic genome activation and morula to blastocyst transition[J].Biol Reprod,2019,100(3):601-617. [36] ZHANG Z,NIKOLAI B C,GATES L A,et al.Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency[J].Nucleic Acids Res,2017,45(16):9348-9360. [37] SUN H Z,SU J M,WU T,et al.CARM1 is heterogeneous in mouse four-cell embryo and important to blastocyst development[J]. Reproduction,2020,159(1):91-104. [38] ARNOLD D R,CORRȆA C A P,LORENA L L G,et al.Supplementation of fetal bovine serum alters histone modification H3R26me2 during preimplantation development of in vitro produced bovine embryos[J].Pesqui Vet Bras,2015,35(7):605-612. [39] CAO Z B,TONG X,YIN H Q,et al.Histone arginine methyltransferase CARM1-mediated H3R26me2 is essential for morula-to-blastocyst transition in pigs[J].Front Cell Dev Biol,2021,9:678282. [40] HUPALOWSKA A,JEDRUSIK A,ZHU M,et al.CARM1 and paraspeckles regulate pre-implantation mouse embryo development[J]. Cell,2018,175(7):1902-1916.e13. [41] DING B,CAO Z B,HONG R Y,et al.WDR5 in porcine preimplantation embryos:expression,regulation of epigenetic modifications and requirement for early development[J].Biol Reprod,2017,96(4):758-771. [42] AOSHIMA K,INOUE E,SAWA H,et al.Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development[J].EMBO Rep,2015,16(7):803-812. [43] JAMBHEKAR A,DHALL A,SHI Y.Roles and regulation of histone methylation in animal development[J].Nat Rev Mol Cell Biol,2019,20(10):625-641. [44] KUMAR B,NAVARRO C,WINBLAD N,et al.Polycomb repressive complex 2 shields naïve human pluripotent cells from trophectoderm differentiation[J].Nat Cell Biol,2022,24(6):845-857. [45] XIE B T,ZHANG H,WEI R Y,et al.Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming[J].Reproduction,2016,151(1):9-16. [46] MEI H L,KOZUKA C,HAYASHI R,et al.H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos[J].Nat Genet,2021,53(4):539-550. [47] BU G W,ZHU W,LIU X,et al.Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos[J].Genome Res,2022,32(8):1487-1501. [48] GAO Y,HYTTEL P,HALL V J.Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development[J].Mol Reprod Dev,2010,77(6):540-549. [49] RONG Y,ZHU Y Z,YU J L,et al.USP16-mediated histone H2A lysine-119 deubiquitination during oocyte maturation is a prerequisite for zygotic genome activation[J].Nucleic Acids Res,2022,50(10):5599-5616. [50] CHEN Z Y,DJEKIDEL M N,ZHANG Y.Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos[J].Nat Genet,2021,53(4):551-563. [51] AGGER K,CLOOS P A C,CHRISTENSEN J,et al.UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development[J].Nature,2007,449(7163):731-734. [52] LAN F,BAYLISS P E,RINN J L,et al.A histone H3 lysine 27 demethylase regulates animal posterior development[J].Nature, 2007, 449(7163):689-694. [53] ZHOU C,WANG Y Z,ZHANG J C,et al.H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency[J].FASEB J,2019,33(3):4638-4652. [54] WANG C F,LIU X Y,GAO Y W,et al.Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development[J].Nat Cell Biol,2018,20(5):620-631. [55] WANG L J,LIU L X,WANG Y S,et al.Aberrant epigenetic reprogramming in the first cell cycle of bovine somatic cell nuclear transfer embryos[J].Cell Reprogram,2021,23(2):99-107. [56] SOUFI A,DONAHUE G,ZARET K S.Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome[J].Cell,2012,151(5):994-1004. [57] BECKER J S,NICETTO D,ZARET K S.H3K9me3-dependent heterochromatin:barrier to cell fate changes[J].Trends Genet,2016,32(1):29-41. [58] TACHIBANA M,SUGIMOTO K,NOZAKI M,et al.G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis[J].Genes Dev,2002,16(14):1779-1791. [59] MATOBA S,LIU Y T,LU F L,et al.Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J].Cell,2014,159(4):884-895. [60] LIU X,WANG Y Z,GAO Y P,et al.H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming[J].Development,2018,145(4):dev158261. [61] ANTONY J,OBACK F,CHAMLEY L W,et al.Transient JMJD2B-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos[J].Mol Cell Biol,2013,33(5):974-983. [62] WENG X G,CAI M M,ZHANG Y T,et al.Improvement in the in vitro development of cloned pig embryos after kdm4a overexpression and an H3K9me3 methyltransferase inhibitor treatment[J].Theriogenology,2020,146:162-170. [63] ZHANG J C,QU P X,ZHOU C,et al.MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming[J].J Biol Chem,2017,292(38):15916-15926. [64] ZHANG Y M,WANG Q Q,LIU K L,et al.Treatment of donor cells with recombinant KDM4D protein improves preimplantation development of cloned ovine embryos[J].Cytotechnology,2018,70(5):1469-1477. [65] CHUNG Y G,MATOBA S,LIU Y T,et al.Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells[J].Cell Stem Cell,2015,17(6):758-766. [66] SANKAR A,LERDRUP M,MANAF A,et al.KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes[J].Nat Cell Biol,2020,22(4):380-388. [67] LIU W Q,LIU X Y,WANG C F,et al.Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing[J].Cell Discov,2016,2:16010. [68] BURTON A,BROCHARD V,GALAN C,et al.Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3[J].Nat Cell Biol,2020,22(7):767-778. [69] XIA W K,XIE W.Rebooting the epigenomes during mammalian early embryogenesis[J].Stem Cell Rep,2020,15(6):1158-1175. [70] DANG Y N,LI S,ZHAO P P,et al.The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle[J].Development,2022,149(11):dev200854. [71] 杨慧,张昌军,刁红录.组蛋白乙酰化与哺乳动物生殖[J].中国细胞生物学学报,2017,39(4):523-528.YANG H,ZHANG C J,DIAO H L.Histone acetylation and mammalian reproduction[J].Chinese Journal of Cell Biology,2017, 39(4):523-528.(in Chinese) [72] ZIEGLER-BIRLING C,DAUJAT S,SCHNEIDER R,et al.Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development[J].Epigenetics,2016,11(8):553-562. [73] BRUNMEIR R,LAGGER S,SEISER C.Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation[J].Int J Dev Biol,2009,53(2-3):275-289. [74] DANG Y N,LI S,ZHAO P P,et al.The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle[J].Development,2022,149(11):dev200854. [75] SANTENARD A,ZIEGLER-BIRLING C,KOCH M,et al.Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3[J].Nat Cell Biol,2010,12(9):853-862. [76] ZHOU N R,CAO Z B,WU R H,et al.Dynamic changes of histone H3 lysine 27 acetylation in pre-implantational pig embryos derived from somatic cell nuclear transfer[J].Anim Reprod Sci,2014,148(3-4):153-163. [77] ZAREI M,SHAMAGHDARI B,VAHABI Z,et al.Epigenetic reprogramming in cloned mouse embryos following treatment with DNA methyltransferase and histone deacetylase inhibitors[J].Syst Biol Reprod Med,2022,68(3):227-238. [78] MA P,SCHULTZ R M.HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos:specificity versus compensation[J]. Cell Death Differ,2016,23(7):1119-1127. [79] ZHAO P P,WANG H N,WANG H,et al.Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development[J].Epigenetics,2020,15(4):369-385. [80] WANG M,CHEN Z Y,ZHANG Y.CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos[J].EMBO J,2022,41(22):e112012. [81] MING H,SUN J W,PASQUARIELLO R,et al.The landscape of accessible chromatin in bovine oocytes and early embryos[J]. Epigenetics,2021,16(3):300-312. [82] LU F L,LIU Y T,INOUE A,et al.Establishing chromatin regulatory landscape during mouse preimplantation development[J]. Cell, 2016, 165(6):1375-1388. [83] WU J Y,HUANG B,CHEN H,et al.The landscape of accessible chromatin in mammalian preimplantation embryos[J].Nature, 2016,534(7609):652-657. [84] GUO H S,HU B Q,YAN L Y,et al.DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells[J].Cell Res,2017,27(2):165-183. [85] JACHOWICZ J W,BING X Y,PONTABRY J,et al.LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo[J].Nat Genet,2017,49(10):1502-1510. [86] ISHIUCHI T,ENRIQUEZ-GASCA R,MIZUTANI E,et al.Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly[J].Nat Struct Mol Biol,2015,22(9):662-671. [87] DE IACO A,PLANET E,COLUCCIO A,et al.DUX-family transcription factors regulate zygotic genome activation in placental mammals[J].Nat Genet,2017,49(6):941-945. [88] ZHANG Y B,YANG Y,QIAO P P,et al.CHAF1b,chromatin assembly factor-1 subunit b,is essential for mouse preimplantation embryos[J].Int J Biol Macromol,2022,195:547-557. [89] GÖRISCH S M,WACHSMUTH M,TÓTH K F,et al.Histone acetylation increases chromatin accessibility[J].J Cell Sci,2005, 118(24):5825-5834. [90] DIXON J R,SELVARAJ S,YUE F,et al.Topological domains in mammalian genomes identified by analysis of chromatin interactions[J].Nature,2012,485(7398):376-380. [91] EA V,BAUDEMENT M O,LESNE A,et al.Contribution of topological domains and loop formation to 3D chromatin organization[J].Genes (Basel),2015,6(3):734-750. [92] KE Y W,XU Y N,CHEN X P,et al.3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis[J].Cell,2017,170(2):367-381.e20. [93] DU Z H,ZHENG H,HUANG B,et al.Allelic reprogramming of 3D chromatin architecture during early mammalian development[J].Nature,2017,547(7662):232-235. [94] NAGANO M,HU B,YOKOBAYASHI S,et al.Nucleome programming is required for the foundation of totipotency in mammalian germline development[J].Embo J,2022,41(13):e110600. [95] AHMED K,DEHGHANI H,RUGG-GUNN P,et al.Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo[J].PLoS One,2010,5(5):e10531. [96] LI F F,WANG D Y,SONG R G,et al.The asynchronous establishment of chromatin 3D architecture between in vitro fertilized and uniparental preimplantation pig embryos[J].Genome Biol,2020,21(1):203. [97] ZHENG H,HUANG B,ZHANG B J,et al.Resetting epigenetic memory by reprogramming of histone modifications in mammals[J].Mol Cell,2016,63(6):1066-1079. [98] BOLONDI A,KRETZMER H,MEISSNER A.Single-cell technologies:a new lens into epigenetic regulation in development[J]. Curr Opin Genet Dev,2022,76:101947. |
[1] | 张为, 潘志豪, 方富贵. 表观遗传学调控雌性动物初情期启动的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1875-1882. |
[2] | 申琦, 王凯, 赵真坚, 陈栋, 余杨, 崔晟頔, 王俊戈, 陈子旸, 吴平先, 唐国庆. NOS2基因DNA甲基化编辑调节NO浓度影响肌肉发育通路基因的表达[J]. 畜牧兽医学报, 2024, 55(3): 984-994. |
[3] | 金美林, 李桃桃, 孙东晓, 魏彩虹. 表观遗传调控在畜禽脂肪沉积机制中的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 855-867. |
[4] | 杨小耿, 张慧珠, 李键, 向华, 何翃闳. DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 443-450. |
[5] | 甘建宇, 张芯, 蔡更元, 洪林君, 黄思秀. DNA甲基化在猪胚胎发育过程中的研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3287-3295. |
[6] | 李雄, 田念念, 宋林锦, 陈晨, 许厚强. 5-Aza-dC对牛成肌细胞MyoD1启动子甲基化及mRNA表达的影响[J]. 畜牧兽医学报, 2021, 52(9): 2439-2451. |
[7] | 刘晓倩, 靳兰杰, 董艳秋, 李冬杰, 张萃, 谷书凯, 李世杰. DNA甲基化调控牛AQP1基因的胎盘特异性印记[J]. 畜牧兽医学报, 2021, 52(8): 2181-2189. |
[8] | 薛倩, 李国辉, 殷建玫, 张会永, 周成浩, 朱云芬, 邢伟杰, 苏一军, 邹剑敏, 韩威. 鸡繁殖性能近交衰退相关CpG岛差异甲基化基因的筛选[J]. 畜牧兽医学报, 2021, 52(4): 943-953. |
[9] | 刘雨萌, 马艳艳, 姜海煦, 张心扬, 武春艳, 程博涵, 李辉. 鸡脂肪组织TCF21基因启动子区DNA甲基化与其表达的关系[J]. 畜牧兽医学报, 2021, 52(12): 3375-3389. |
[10] | 张艳艳, 彭辉, 肖天放. 哺乳动物早期胚胎滋养外胚层发育的研究进展[J]. 畜牧兽医学报, 2018, 49(10): 2080-2085. |
[11] | 甘麦邻, 杨大洪, 谭娅, 杨琼, 蒲红州, 张顺华, 朱砺. 环境因素引起的哺乳动物跨代DNA甲基化修饰现象[J]. 畜牧兽医学报, 2017, 48(12): 2225-2231. |
[12] | 刘孜斐, 邓明田, 任才芳, 万永杰, 王锋. 克隆山羊成纤维细胞IGF2-H19基因座甲基化分析[J]. 畜牧兽医学报, 2017, 48(12): 2277-2285. |
[13] | 王晓铄, 赵会敏, 唐天, 李凯, 钱旭, 张雪, 图雅, 郑云胜, 王怀栋, 俞英. CD4基因的DNA甲基化修饰在家畜抗病育种中的应用[J]. 畜牧兽医学报, 2017, 48(10): 1796-1806. |
[14] | 任子利,赵彦玲,王建洲,李瑜鑫,商鹏,强巴央宗. 维生素C对藏猪精液4 ℃保存及其精子全基因组DNA甲基化的影响[J]. 畜牧兽医学报, 2016, 47(5): 1057-1061. |
[15] | 贾文超,刘亮亮,吴贤锋,赵钊艳,王珂,王毛,高静,王立强,陈宏,潘传英,蓝贤勇. 山羊STAT3基因克隆、生物信息学分析及甲基化修饰研究[J]. 畜牧兽医学报, 2016, 47(3): 457-466. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||