畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (10): 3287-3295.doi: 10.11843/j.issn.0366-6964.2022.10.002
甘建宇, 张芯, 蔡更元, 洪林君*, 黄思秀*
收稿日期:
2022-04-20
出版日期:
2022-10-23
发布日期:
2022-10-26
通讯作者:
洪林君,主要从事动物遗传育种与繁殖研究,E-mail:Linjun.Hong@scau.edu.cn;黄思秀,主要从事动物遗传育种与繁殖研究,E-mail:sxhuang815@scau.edu.cn
作者简介:
甘建宇(1999-),男,广西玉林人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail:jygan@stu.scau.edu.cn
基金资助:
GAN Jianyu, ZHANG Xin, CAI Gengyuan, HONG Linjun*, HUANG Sixiu*
Received:
2022-04-20
Online:
2022-10-23
Published:
2022-10-26
摘要: 猪的胚胎发育需要经历受精、卵裂、孵化、形态转变、附植、器官分化等一系列重要的生理阶段。虽然在胚胎发育过程中基因的严格表达与正确指导是胚胎能否正常发育的决定性条件,但研究表明DNA甲基化修饰对胚胎的发育也起着必不可少的作用。DNA甲基化是一种常见且重要的表观遗传修饰,虽然不改变DNA的一级序列,但也包含可遗传信息,并在基因的转录调控中起重要作用。在猪的胚胎发育中,DNA甲基化呈现出高度动态的过程,这一过程受孕期母体营养和发育环境条件影响。本文将从胚胎早期发育、体细胞核移植和孕期母体营养三个方面来阐述DNA甲基化对胚胎发育的影响,为进一步研究猪胚胎在发育过程中的DNA甲基化机制和提高体细胞核移植的成功率提供参考。
中图分类号:
甘建宇, 张芯, 蔡更元, 洪林君, 黄思秀. DNA甲基化在猪胚胎发育过程中的研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3287-3295.
GAN Jianyu, ZHANG Xin, CAI Gengyuan, HONG Linjun, HUANG Sixiu. Research Progress of DNA Methylation during Porcine Embryonic Development[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3287-3295.
[1] | PRATHER R S, LORSON M, ROSS J W, et al.Genetically engineered pig models for human diseases[J].Annu Rev Anim Biosci, 2013, 1:203-219. |
[2] | BICK J T, FLÖTER V L, ROBINSON M D, et al.Small RNA-seq analysis of single porcine blastocysts revealed that maternal estradiol-17beta exposure does not affect miRNA isoform (isomiR) expression[J].BMC Genomics, 2018, 19(1):590. |
[3] | BAZER F W, JOHNSON G A.Pig blastocyst-uterine interactions[J].Differentiation, 2014, 87(1-2):52-65. |
[4] | BIDARIMATH M, TAYADE C.Pregnancy and spontaneous fetal loss:A pig perspective[J].Mol Reprod Dev, 2017, 84(9):856-869. |
[5] | WU G, BAZER F W, WALLACE J M, et al.BOARD-INVITED REVIEW:Intrauterine growth retardation:implications for the animal sciences[J].J Anim Sci, 2006, 84(9):2316-2337. |
[6] | POPE W F.Uterine asynchrony:A cause of embryonic loss[J].Biol Reprod, 1988, 39(5):999-1003. |
[7] | EGGER G, LIANG G N, APARICIO A, et al.Epigenetics in human disease and prospects for epigenetic therapy[J].Nature, 2004, 429(6990):457-463. |
[8] | JAENISCH R, BIRD A.Epigenetic regulation of gene expression:How the genome integrates intrinsic and environmental signals[J].Nat Genet, 2003, 33 Suppl:245-254. |
[9] | FENG S H, JACOBSEN S E, REIK W.Epigenetic reprogramming in plant and animal development[J].Science, 2010, 330(6004):622-627. |
[10] | ALBERIO R.Regulation of cell fate decisions in early mammalian embryos[J].Annu Rev Anim Biosci, 2020, 8:377-393. |
[11] | ARRELL V L, DAY B N, PRATHER R S.The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa:quantitative and qualitative aspects of protein synthesis[J].Biol Reprod, 1991, 44(1):62-68. |
[12] | BAZER F W, SPENCER T E, JOHNSON G A, et al.Uterine receptivity to implantation of blastocysts in mammals[J].Front Biosci (Schol Ed), 2011, 3(2):745-767. |
[13] | TAYADE C, BLACK G P, FANG Y, et al.Differential gene expression in endometrium, endometrial lymphocytes, and trophoblasts during successful and abortive embryo implantation[J].J Immunol, 2006, 176(1):148-156. |
[14] | KACZMAREK M M, NAJMULA J, GUZEWSKA M M, et al.miRNAs in the peri-implantation period:Contribution to embryo-maternal communication in pigs[J].Int J Mol Sci, 2020, 21(6):2229. |
[15] | 胡 群, 叶 南, 史泽宇, 等.猪妊娠过程中胎盘发育及其调控基因研究进展[J].中国畜牧兽医, 2018, 45(6):1633-1638.HU Q, YE N, SHI Z Y, et al.Research advance on placenta development and its regulated genes in pig[J].China Animal Husbandry & Veterinary Medicine, 2018, 45(6):1633-1638.(in Chinese) |
[16] | LAW J A, JACOBSEN S E.Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J].Nat Rev Genet, 2010, 11(3):204-220. |
[17] | BESTOR T H.The DNA methyltransferases of mammals[J].Hum Mol Genet, 2000, 9(16):2395-2402. |
[18] | LI Y, ZHANG Z, CHEN J, et al.Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J].Nature, 2018, 564(7734):136-140. |
[19] | SCHNEIDER E, PLIUSHCH G, EL HAJJ N, et al.Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns[J].Nucleic Acids Res, 2010, 38(12):3880-3890. |
[20] | MEDVEDEVA Y A, KHAMIS A M, KULAKOVSKIY I V, et al.Effects of cytosine methylation on transcription factor binding sites[J].BMC Genomics, 2014, 15:119. |
[21] | DURCOVA-HILLS G, HAJKOVA P, SULLIVAN S, et al.Influence of sex chromosome constitution on the genomic imprinting of germ cells[J].Proc Natl Acad Sci U S A, 2006, 103(30):11184-11188. |
[22] | VARLEY K E, GERTZ J, BOWLING K M, et al.Dynamic DNA methylation across diverse human cell lines and tissues[J].Genome Res, 2013, 23(3):555-567. |
[23] | LI M Z, WU H L, LUO Z G, et al.An atlas of DNA methylomes in porcine adipose and muscle tissues[J].Nat Commun, 2012, 3:850. |
[24] | GOWHER H, JELTSCH A.Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse:the enzyme modifies DNA in a non-processive manner and also methylates non-CpA sites[J].J Mol Biol, 2001, 309(5):1201-1208. |
[25] | RAMSAHOYE B H, BINISZKIEWICZ D, LYKO F, et al.Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a[J].Proc Natl Acad Sci U S A, 2000, 97(10):5237-5242. |
[26] | LAURENT L, WONG E, LI G L, et al.Dynamic changes in the human methylome during differentiation[J].Genome Res, 2010, 20(3):320-331. |
[27] | LISTER R, PELIZZOLA M, DOWEN R H, et al.Human DNA methylomes at base resolution show widespread epigenomic differences[J].Nature, 2009, 462(7271):315-322. |
[28] | SANTOS F, HENDRICH B, REIK W, et al.Dynamic reprogramming of DNA methylation in the early mouse embryo[J].Dev Biol, 2002, 241(1):172-182. |
[29] | LEE H J, HORE T A, REIK W.Reprogramming the methylome:Erasing memory and creating diversity[J].Cell Stem Cell, 2014, 14(6):710-719. |
[30] | LI E.Chromatin modification and epigenetic reprogramming in mammalian development[J].Nat Rev Genet, 2002, 3(9):662-673. |
[31] | SMITH Z D, CHAN M M, MIKKELSEN T S, et al.A unique regulatory phase of DNA methylation in the early mammalian embryo[J].Nature, 2012, 484(7394):339-344. |
[32] | KAFRI T, ARIEL M, BRANDEIS M, et al.Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line[J].Genes Dev, 1992, 6(5):705-714. |
[33] | MONK M, BOUBELIK M, LEHNERT S.Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development[J].Development, 1987, 99(3):371-382. |
[34] | FULKA J, FULKA H, SLAVIK T, et al.DNA methylation pattern in pig in vivo produced embryos[J].Histochem Cell Biol, 2006, 126(2):213-217. |
[35] | JEONG Y S, YEO S, PARK J S, et al.DNA methylation state is preserved in the sperm-derived pronucleus of the pig zygote[J].Int J Dev Biol, 2007, 51(8):707-714. |
[36] | ZHU Q F, SANG F, WITHEY S, et al.Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage[J].Cell Rep, 2021, 34(6):108735. |
[37] | HYLDIG S M W, OSTRUP O, VEJLSTED M, et al.Changes of DNA methylation level and spatial arrangement of primordial germ cells in embryonic day 15 to embryonic day 28 pig embryos[J].Biol Reprod, 2011, 84(6):1087-1093. |
[38] | GÓMEZ-REDONDO I, PLANELLS B, CÁNOVAS S, et al.Genome-wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline[J].Clin Epigenet, 2021, 13(1):27. |
[39] | REIK W.Stability and flexibility of epigenetic gene regulation in mammalian development[J].Nature, 2007, 447(7143):425-432. |
[40] | HAJKOVA P, JEFFRIES S J, LEE C, et al.Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway[J].Science, 2010, 329(5987):78-82. |
[41] | MORGAN H D, DEAN W, COKER H A, et al.Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues:implications for epigenetic reprogramming[J].J Biol Chem, 2004, 279(50):52353-52360. |
[42] | POPP C, DEAN W, FENG S H, et al.Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency[J].Nature, 2010, 463(7284):1101-1105. |
[43] | GUIBERT S, FORNÉ T, WEBER M.Global profiling of DNA methylation erasure in mouse primordial germ cells[J].Genome Res, 2012, 22(4):633-641. |
[44] | LUO Z G, ZHANG K, CHEN L, et al.Molecular characterization and tissue expression profile of the Dnmts gene family in pig[J].J Integr Agric, 2017, 16(6):1367-1374. |
[45] | SHARIF J, MUTO M, TAKEBAYASHI S I, et al.The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA[J].Nature, 2007, 450(7171):908-912. |
[46] | OKANO M, XIE S P, LI E.Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases[J]. Nat Genet, 1998, 19(3):219-220. |
[47] | WION D, CASADESÚS J.N6-methyl-adenine:An epigenetic signal for DNA-protein interactions[J].Nat Rev Microbiol, 2006, 4(3):183-192. |
[48] | RATEL D, RAVANAT J L, BERGER F, et al.N6-methyladenine:the other methylated base of DNA[J].Bioessays, 2006, 28(3):309-315. |
[49] | HE S M, ZHANG G Q, WANG J J, et al.6 mA-DNA-binding factor Jumu controls maternal-to-zygotic transition upstream of Zelda[J].Nat Commun, 2019, 10(1):2219. |
[50] | LIU J Z, ZHU Y X, LUO G Z, et al.Abundant DNA 6 mA methylation during early embryogenesis of zebrafish and pig[J].Nat Commun, 2016, 7:13052. |
[51] | FERNANDES S B, GROVA N, ROTH S, et al.N6-methyladenine in eukaryotic DNA:Tissue distribution, early embryo development, and neuronal toxicity[J].Front Genet, 2021, 12:657171. |
[52] | LI Z, ZHAO S, NELAKANTI R V, et al.N6-methyladenine in DNA antagonizes SATB1 in early development[J].Nature, 2020, 583(7817):625-630. |
[53] | WU T P, WANG T, SEETIN M G, et al.DNA methylation on N6-adenine in mammalian embryonic stem cells[J].Nature, 2016, 532(7599):329-333. |
[54] | BOULIAS K, GREER E L.Means, mechanisms and consequences of adenine methylation in DNA[J].Nat Rev Genet, 2022, 23(7):411-428. |
[55] | ZHU Q F, STÖGER R, ALBERIO R.A Lexicon of DNA modifications:Their roles in embryo development and the germline[J].Front Cell Dev Biol, 2018, 6:24. |
[56] | ZHAO J G, WHYTE J, PRATHER R S.Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer[J].Cell Tissue Res, 2010, 341(1):13-21. |
[57] | PRATHER R S, SHEN M D, DAI Y F.Genetically modified pigs for medicine and agriculture[J].Biotechnol Genet Eng Rev, 2008, 25:245-265. |
[58] | LIU Y, LI J, LØVENDAHL P, et al.In vitro manipulation techniques of porcine embryos:A meta-analysis related to transfers, pregnancies and piglets[J].Reprod Fertil Dev, 2015, 27(3):429-439. |
[59] | DESHMUKH R S, ØSTRUP O, ØSTRUP E, et al.DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer[J].Epigenetics, 2011, 6(2):177-187. |
[60] | SONG X X, LIU Z H, HE H B, et al.Dnmt1s in donor cells is a barrier to SCNT-mediated DNA methylation reprogramming in pigs[J].Oncotarget, 2017, 8(21):34980-34991. |
[61] | WANG X W, SHI J S, CAI G Y, et al.Overexpression of MBD3 improves reprogramming of cloned pig embryos[J].Cell Reprogram, 2019, 21(5):221-228. |
[62] | LI Z C, HE X Y, CHEN L W, et al.Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer[J].Cell Reprogram, 2013, 15(5):459-470. |
[63] | ZHAI Y H, LI W, ZHANG Z R, et al.Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs[J].Mol Reprod Dev, 2018, 85(1):26-37. |
[64] | HUAN Y J, ZHU J, HUANG B, et al.Trichostatin A rescues the disrupted imprinting induced by somatic cell nuclear transfer in pigs[J].PLoS One, 2015, 10(5):e0126607. |
[65] | XU W H, LI Z C, YU B, et al.Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer[J].PLoS One, 2013, 8(5):e64705. |
[66] | ZHAI Y H, ZHANG M, AN X L, et al.TRIM28 maintains genome imprints and regulates development of porcine SCNT embryos[J].Reproduction, 2021, 161(4):411-424. |
[67] | YU D W, WANG J, ZOU H Y, et al.Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning[J].Proc Natl Acad Sci U S A, 2018, 115(47):E11071-E11080. |
[68] | WANG P, LI X P, CAO L H, et al.MicroRNA-148a overexpression improves the early development of porcine somatic cell nuclear transfer embryos[J].PLoS One, 2017, 12(6):e0180535. |
[69] | QU J D, WANG X Y, JIANG Y J, et al.Optimizing 5-aza-2'-deoxycytidine treatment to enhance the development of porcine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming[J].Res Vet Sci, 2020, 132:229-236. |
[70] | JEONG P S, YANG H J, PARK S H, et al.Combined chaetocin/trichostatin A treatment improves the epigenetic modification and developmental competence of porcine somatic cell nuclear transfer embryos[J].Front Cell Dev Biol, 2021, 9:709574. |
[71] | ZHAI Y H, ZHANG Z R, YU H, et al.Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs[J].Cell Physiol Biochem, 2018, 50(4):1376-1397. |
[72] | JIN J X, LEE S, TAWEECHAIPAISANKUL A, et al.The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos[J].Cell Physiol Biochem, 2017, 41(3):1255-1266. |
[73] | JEONG P S, SIM B W, PARK S H, et al.Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity[J].Int J Mol Sci, 2020, 21(14):4836. |
[74] | WATERLAND R A.Assessing the effects of high methionine intake on DNA methylation[J].J Nutr, 2006, 136(6 Suppl):1706S-1710S. |
[75] | ZGLEJC K, FRANCZAK A.Peri-conceptional under-nutrition alters the expression of TRIM28 and ZFP57 in the endometrium and embryos during peri-implantation period in domestic pigs[J].Reprod Domest Anim, 2017, 52(4):542-550. |
[76] | ALTMANN S, MURANI E, SCHWERIN M, et al.Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle[J].Epigenetics, 2012, 7(3):239-252. |
[77] | OSTER M, TRAKOOLJUL N, REYER H, et al.Sex-specific muscular maturation responses following prenatal exposure to methylation-related micronutrients in pigs[J].Nutrients, 2017, 9(1):74. |
[78] | FRANCZAK A, ZGLEJC-WASZAK K, MARTYNIAK M, et al.Peri-conceptional nutritional restriction alters transcriptomic profile in the peri-implantation pig embryos[J].Anim Reprod Sci, 2018, 197:305-316. |
[79] | ZGLEJC-WASZAK K, WASZKIEWICZ E M, FRANCZAK A.Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos[J].Theriogenology, 2019, 123:185-193. |
[80] | FRANCZAK A, ZGLEJC K, WASZKIEWICZ E, et al.Periconceptional undernutrition affects in utero methyltransferase expression and steroid hormone concentrations in uterine flushings and blood plasma during the peri-implantation period in domestic pigs[J].Reprod Fertil Dev, 2017, 29(8):1499-1508. |
[81] | LI Z C, YUE Z M, AO Z, et al.Maternal dietary supplementation of arginine increases the ratio of total cloned piglets born to total transferred cloned embryos by improving the pregnancy rate of recipient sows[J].Anim Reprod Sci, 2018, 196:211-218. |
[82] | CEDAR H, BERGMAN Y.Linking DNA methylation and histone modification:Patterns and paradigms[J].Nat Rev Genet, 2009, 10(5):295-304. |
[1] | 张为, 潘志豪, 方富贵. 表观遗传学调控雌性动物初情期启动的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1875-1882. |
[2] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[3] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[4] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[5] | 韩阳, 关帅印, 李振, 周赛赛, 袁红根, 宋云峰. 猪圆环病毒3型Rep蛋白的原核表达及酶活性分析[J]. 畜牧兽医学报, 2024, 55(5): 2061-2071. |
[6] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[7] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[8] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[9] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[10] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[11] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[12] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[13] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[14] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[15] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||