畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (2): 329-338.doi: 10.11843/j.issn.0366-6964.2022.02.001
王迪, 俞英*
收稿日期:
2021-04-23
出版日期:
2022-02-23
发布日期:
2022-03-02
通讯作者:
俞英,主要从事动物抗病分子育种及表观遗传调控机理研究,E-mail:yuying@cau.edu.cn
作者简介:
王迪(1992-),女,辽宁人,博士,主要从事奶牛乳房炎抗病遗传育种研究,E-mail:703327667@qq.com
基金资助:
WANG Di, YU Ying*
Received:
2021-04-23
Online:
2022-02-23
Published:
2022-03-02
摘要: 奶牛乳房炎是一种常见疾病,对动物福利和奶牛场的经济效益产生不利影响。患有乳房炎的奶牛,尤其是金葡菌乳房炎的奶牛,其牛奶产量和品质大幅下降,严重的还会导致奶牛丧失生产能力。目前,奶牛乳房炎相关的研究已成为畜牧业的重点课题。本文综述和分析了近几年奶牛乳房炎及奶牛金葡菌乳房炎的主要研究领域和现状,主要对其抗病遗传育种在转录组学研究和表观遗传学研究等方面进行了详细综述,以期为奶业生产中奶牛乳房炎,尤其是金葡菌乳房炎的预防控制提供科学依据和参考。
中图分类号:
王迪, 俞英. 奶牛金葡菌乳房炎抗性的转录组及表观遗传学研究进展[J]. 畜牧兽医学报, 2022, 53(2): 329-338.
WANG Di, YU Ying. Research Progress on Transcriptomics and Epigenetics of Bovine S. aureus Mastitis Resistance[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 329-338.
[1] | MIDDLETON J R,SAEMAN A,FOX L K,et al.The national mastitis council:a global organization for mastitis control and milk quality,50 years and beyond[J].J Mammary Gland Biol Neoplasia,2014,19(3-4):241-251. |
[2] | WANG X,WANG X,WANG Y,et al.Antimicrobial resistance and toxin gene profiles of Staphylococcus aureus strains from Holstein milk[J].Lett Appl Microbiol,2014,58(6):527-534. |
[3] | EL-SAYED A,KAMEL M.Bovine mastitis prevention and control in the post-antibiotic era[J].Trop Anim Health Prod,2021,53(2):236. |
[4] | MEREDITH B K,KEARNEY F J,FINLAY E K,et al.Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland[J].BMC Genet,2012,13:21. |
[5] | 王晓,解小莉,王胜,等.中国荷斯坦牛乳房炎易感性及抗性的全基因组关联分析[J].畜牧兽医学报, 2013,44(12):1907-1912.WANG X,XIE X L,WANG S,et al.Genome-wide association study for mastitis susceptibility and resistance in Chinese Holsteins[J].Acta Veterinaria et Zootechnica Sinica,2013,44(12):1907-1912.(in Chinese) |
[6] | WANG X,MA P P,LIU J F,et al.Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility[J].BMC Genet,2015,16:111. |
[7] | 冯文,董易春,王晓,等.TRAPPC9基因对奶牛金葡菌乳房炎抗性性状的遗传效应[J].畜牧兽医学报, 2016, 47(2):276-283.FENG W,DONG Y C,WANG X,et al.The genetic effect of TRAPPC9 on mastitis resistance to S. aureus in dairy cows[J].Acta Veterinaria et Zootechnica Sinica,2016,47(2):276-283.(in Chinese) |
[8] | KIRSANOVA E,HERINGSTAD B,LEWANDOWSKA-SABAT A,et al.Identification of candidate genes affecting chronic subclinical mastitis in Norwegian Red cattle:combining genome-wide association study, topologically associated domains and pathway enrichment analysis[J].Anim Genet,2020,51(1):22-31. |
[9] | RUEGG P L.A 100-Year Review:mastitis detection,management,and prevention[J].J Dairy Sci,2017,100(12):10381-10397. |
[10] | MAGRO G,REBOLINI M,BERETTA D,et al.Methicillin-resistant Staphylococcus aureus CC22-MRSA-IV as an agent of dairy cow intramammary infections[J].Vet Microbiol,2018,227:29-33. |
[11] | ZHOU K X,LI C,CHEN D M,et al.A review on nanosystems as an effective approach against infections of Staphylococcus aureus[J].Int J Nanomedicine,2018,13:7333-7347. |
[12] | FOSTER T J.Immune evasion by Staphylococci[J].Nat Rev Microbiol,2005,3(12):948-958. |
[13] | GRUNDMANN H,AIRES-DE-SOUSA M,BOYCE J,et al.Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat[J].Lancet,2006,368(9538):874-885. |
[14] | ALGHARIB S A,DAWOOD A,XIE S Y.Nanoparticles for treatment of bovine Staphylococcus aureus mastitis[J].Drug Deliv,2020,27(1):292-308. |
[15] | WANG D F,WANG Z C,YAN Z T,et al.Bovine mastitis Staphylococcus aureus:antibiotic susceptibility profile,resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China[J].Infect Genet Evol,2015,31:9-16. |
[16] | SCHERPENZEEL C G M,HOGEVEEN H,MAAS L,et al.Economic optimization of selective dry cow treatment[J].J Dairy Sci,2018,101(2):1530-1539. |
[17] | USMAN T,WANG Y,LIU C,et al.Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle[J].Anim Genet,2015,46(4):371-380. |
[18] | USMAN T,YU Y,LIU C,et al.Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis[J].Mol Biol Rep,2014,41(12):8293-8301. |
[19] | OWEN K L,BROCKWELL N K,PARKER B S.JAK-STAT signaling:a double-edged sword of immune regulation and cancer progression[J].Cancers (Basel),2019,11(12):2002. |
[20] | PAWLIK A,SENDER G,KAPERA M,et al.Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle[J].Cent Eur J Immunol,2015,40(2):153-158. |
[21] | MAZZILLI M,PICCININI R,SCALI F,et al.Pattern characterization of genes involved in non-specific immune response in Staphylococcus aureus isolates from intramammary infections[J].Res Vet Sci,2015,103:54-59. |
[22] | MCLOUGHLIN K E,NALPAS N C,RUE-ALBRECHT K,et al.RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis[J].Front Immunol,2014,5:396. |
[23] | MOYES K M,SØRENSEN P,BIONAZ M.The impact of intramammary Escherichia coli challenge on liver and mammary transcriptome and cross-talk in dairy cows during early lactation using RNAseq[J].PLoS One,2016, 11(6):e0157480. |
[24] | HEIMES A,BRODHAGEN J,WEIKARD R,et al.Hepatic transcriptome analysis identifies divergent pathogen-specific targeting-strategies to modulate the innate immune system in response to intramammary infection[J].Front Immunol,2020,11:715. |
[25] | BONNEFONT C M D,TOUFEER M,CAUBET C,et al.Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus[J]. BMC Genom,2011,12:208. |
[26] | BRAND B,HARTMANN A,REPSILBER D,et al.Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score[J].Genet Sel Evol,2011,43(1):24. |
[27] | PISONI G,MORONI P,GENINI S,et al.Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats[J].Vet Immunol Immunopathol,2010,135:208-217. |
[28] | HE Y H,SONG M Y,ZHANG Y,et al.Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus[J].BMC Genom,2016,17:565. |
[29] | WANG X G,JU Z H,HOU M H,et al.Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis[J].PLoS One,2016, 11(7):e0159719. |
[30] | SONG M Y,HE Y H,ZHOU H K,et al.Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis[J].Sci Rep,2016,6:29390. |
[31] | FANG L Z,HOU Y L,AN J,et al.Genome-wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus[J].Front Cell Infect Microbiol, 2016,6:193. |
[32] | RAMOS-LOPEZ O,MILAGRO F I,RIEZU-BOJ J I,et al.Epigenetic signatures underlying inflammation:an interplay of nutrition,physical activity,metabolic diseases,and environmental factors for personalized nutrition[J]. Inflamm Res,2021,70(1):29-49. |
[33] | WANG M Q,IBEAGHA-AWEMU E M.Impacts of epigenetic processes on the health and productivity of livestock[J].Front Genet,2021,11:613636. |
[34] | HALUŠKOVÁ J,HOLEČKOVÁ B,STANIČOVÁ J.DNA methylation studies in cattle[J].J Appl Genet,2021, 62(1):121-136. |
[35] | GREENBERG M V C,BOURC'HIS D.The diverse roles of DNA methylation in mammalian development and disease[J].Nat Rev Mol Cell Biol,2019,20(10):590-607. |
[36] | ENNOUR-IDRISSI K,DRAGIC D,DUROCHER F,et al.Epigenome-wide DNA methylation and risk of breast cancer:a systematic review[J].BMC Cancer,2020,20(1):1048. |
[37] | REID B M,FRIDLEY B L.DNA methylation in ovarian cancer susceptibility[J].Cancers (Basel),2020, 13(1):108. |
[38] | ZHANG B,ZHOU T,WU H J,et al.Difference of IFI44L methylation and serum IFN-a1 level among patients with discoid and systemic lupus erythematosus and healthy individuals[J].J Transl Autoimmun,2021,4:100092. |
[39] | MAHONY C,O'RYAN C.Convergent canonical pathways in autism spectrum disorder from proteomic, transcriptomic and DNA methylation data[J].Int J Mol Sci,2021,22(19):10757. |
[40] | CHANG G J,PETZL W,VANSELOW J,et al.Epigenetic mechanisms contribute to enhanced expression of immune response genes in the liver of cows after experimentally induced Escherichia coli mastitis[J].Vet J,2015, 203(3):339-341. |
[41] | ZHANG Y,WANG X G,JIANG Q,et al.DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows[J].Cell Stress Chaperones, 2018,23(4):617-628. |
[42] | JU Z H,JIANG Q,WANG J P,et al.Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows[J].BMC Genom,2020,21(1):102. |
[43] | HAN L F,WITMER P D,CASEY E,et al.DNA methylation regulates MicroRNA expression[J].Cancer Biol Ther,2007,6(8):1284-1288. |
[44] | LI Z X,ZHANG H L,SONG N,et al.Molecular cloning,characterization and expression of miR-15a-3p and miR-15b-3p in dairy cattle[J].Mol Cell Probes,2014,28(5-6):255-258. |
[45] | LEV MAOR G,YEARIM A,AST G.The alternative role of DNA methylation in splicing regulation[J].Trends Genet,2015,31(5):274-280. |
[46] | DARISIPUDI M N,BRÖKER B M.How S. aureus blinds the inflammasome to escape immune control[J]. EBioMedicine,2021,71:103549. |
[47] | LIAO X Y,HU W C,LIU D H,et al.Stress resistance and pathogenicity of nonthermal-plasma-induced viable-but-nonculturable Staphylococcus aureus through energy suppression,oxidative stress defense,and immune-escape mechanisms[J].Appl Environ Microbiol,2021,87(2):e02380-20. |
[48] | BRADLEY A J.Bovine mastitis:an evolving disease[J].Vet J,2002,164(2):116-128. |
[49] | SCHUKKEN Y H,GVNTHER J,FITZPATRICK J,et al.Host-response patterns of intramammary infections in dairy cows[J].Vet Immunol Immunopathol,2011,144(3-4):270-289. |
[50] | JENSEN K,GVNTHER J,TALBOT R,et al.Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters[J]. BMC Genom,2013,14(1):36. |
[51] | RADOSTITS O M.Herd health:food animal production medicine[M].3rd ed.Philadelphia:W. B. Saunders,2001. |
[52] | JIN W W,IBEAGHA-AWEMU E M,LIANG G X,et al.Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles[J].BMC Genom,2014,15:181. |
[53] | CHEN J B,WU Y J,SUN Y W,et al.Bacterial lipopolysaccharide induced alterations of genome-wide DNA methylation and promoter methylation of lactation-related genes in bovine mammary epithelial cells[J].Toxins (Basel),2019,11(5):298. |
[54] | WU Y J,SUN Y W,DONG X W,et al.The synergism of PGN,LTA and LPS in inducing transcriptome changes,inflammatory responses and a decrease in lactation as well as the associated epigenetic mechanisms in bovine mammary epithelial cells[J].Toxins (Basel),2020,12(6):387. |
[55] | WANG M Q,LIANG Y,IBEAGHA-AWEMU E M,et al.Genome-wide DNA methylation analysis of mammary gland tissues from chinese holstein cows with Staphylococcus aureus induced mastitis[J].Front Genet,2020,11:550515. |
[56] | WANG X S,ZHANG Y,HE Y H,et al.Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows[J].Genet Mol Res,2013,12(4):6228-6239. |
[57] | WANG D,WEI Y Y,SHI L Y,et al.Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis[J].Asian-Australas J Anim Sci,2020,33(2):203-211. |
[58] | WU Y J,CHEN J B,SUN Y W,et al.PGN and LTA from Staphylococcus aureus induced inflammation and decreased lactation through regulating DNA methylation and histone H3 acetylation in bovine mammary epithelial cells[J].Toxins (Basel),2020,12(4):238. |
[59] | WANG J,YAN X X,NESENGANI L T,et al.LPS-induces IL-6 and IL-8 gene expression in bovine endometrial cells "through DNA methylation"[J].Gene,2018,677:266-272. |
[60] | USMAN T,YU Y,WANG Y.P2001 CD4 promoter hyper methylation is associated with lower gene expression in clinical mastitis cows and vice versa in the healthy controls[J].J Anim Sci,2016,94(S4):38. |
[61] | VANSELOW J,YANG W,HERRMANN J,et al.DNA-remethylation around a STAT5-binding enhancer in the αS1-casein promoter is associated with abrupt shutdown of αS1-casein synthesis during acute mastitis[J].J Mol Endocrinol,2006,37(3):463-477. |
[1] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[2] | 和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 金黄色葡萄球菌异质性耐药研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1432-1445. |
[3] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[4] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[5] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[6] | 吴自豪, 蔡依龙, 陀海欣, 陈伟. 1株马乳源PVL+ST22型金黄色葡萄球菌致病性分析[J]. 畜牧兽医学报, 2024, 55(2): 718-726. |
[7] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[8] | 刘益丽, 唐娇, 闵奇, 杨露, 王泽宁, 胡莲, 赵迪, 江明锋. 基于转录组数据挖掘牦牛皱胃发育代谢的关键候选基因[J]. 畜牧兽医学报, 2024, 55(1): 153-168. |
[9] | 梁凯欣, 钟海文, 宋长绪, 杨化强, 黄思秀, 徐铮. SYNGR2影响猪圆环病毒2型体外增殖的研究[J]. 畜牧兽医学报, 2023, 54(9): 3824-3835. |
[10] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[11] | 胡婷, 张永红, 侯晓林, 姚华, 崔德凤, 潘早早, 张凌宇, 张家希, 吴琼. 基于转录组学研究双酚A对猪睾丸支持细胞炎症和氨基酸代谢通路的影响[J]. 畜牧兽医学报, 2023, 54(7): 2858-2871. |
[12] | 刘航, 王欢欢, 葛莹, 张雷, 张伟武, 魏莹晖, 李庆海, 范京辉, 章学东. 基于转录组和蛋白组筛选乌骨鸡肤色性状候选基因[J]. 畜牧兽医学报, 2023, 54(6): 2320-2329. |
[13] | 白露, 王梦杰, 马小春, 何政肖, 孔富丽, 刘大伟, 营凡, 朱丹, 赵桂苹, 文杰, 刘冉冉. 鸡木质化胸肌组织学特征及分子调控通路改变研究[J]. 畜牧兽医学报, 2023, 54(5): 1915-1926. |
[14] | 王美慧, 钟震宇, 白加德, 单云芳, 程志斌, 张庆勋, 孟玉萍, 董玉兰, 郭青云. C型产气荚膜梭菌感染鹿肠道中关键基因和途径的转录组分析[J]. 畜牧兽医学报, 2023, 54(5): 2147-2157. |
[15] | 金美林, 李桃桃, 孙东晓, 魏彩虹. 表观遗传调控在畜禽脂肪沉积机制中的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 855-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||