

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5706-5720.doi: 10.11843/j.issn.0366-6964.2025.11.029
• Preventive Veterinary Medicine • Previous Articles Next Articles
MA Yue1(
), MIAO Yuhang1,2(
), DING Tao1,2, XIN Jie1,2, MA Wenyan1,2, LI Yanan1,2,*(
), ZHOU Xuezhang1,2,*(
), DU Jun1,2,*(
)
Received:2024-10-08
Online:2025-11-23
Published:2025-11-27
Contact:
LI Yanan, ZHOU Xuezhang, DU Jun
E-mail:2459892015@qq.com;myh6943@126.com;liyanan@nxu.cn;zhouxuezhang@nxu.edu.cn;dujun@nxu.edu.cn
CLC Number:
MA Yue, MIAO Yuhang, DING Tao, XIN Jie, MA Wenyan, LI Yanan, ZHOU Xuezhang, DU Jun. Signaling Pathway Analysis of Ferroptosis Induced by Recombinant Candida krusei 14-3-3 Protein in Bovine Mammary Epithelial Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5706-5720.
Fig. 1
The ultrastructural changes of MAC-T in each treatment group were observed by transmission electron microscope(Bars of figures in the upper line=2 μm; Bars of figures in the lower line=500 nm) A. The internal ultrastructure morphological changes of cells in positive control group and experimental group Ⅰ; B. The ultrastructural morphological changes of the cells in the experimental group Ⅱ; C. Ultrastructural morphological changes of cells in experimental group Ⅲ"
Fig. 2
Effects of Erastin and rCK14-3-3 protein on the survival rate of MAC-T and the content of LDH, MDA, Fe2+and GSH A. Detection of cell survival rate in each treatment group; B. Comparison of LDH release in each treatment group; C. Comparison of MDA content in each treatment group; D. Comparison of Fe2+ content in each treatment group; E. Comparison of GSH content in each treatment group. *P < 0.05, **P < 0.01, ***P < 0.001, n=3, the same as below"
Fig. 3
The effects of Ferrostatin-1 on the survival rate of MAC-T and the contents of LDH, MDA, Fe2+ and GSH A. Detection of cell survival rate in each treatment group; B. Comparison of LDH release in each treatment group; C. Comparison of MDA content in each treatment group; D. Comparison of Fe2+ content in each treatment group; E. Comparison of GSH content in each treatment group"
Fig. 4
The effects of ML385 on the survival rate of MAC-T and the contents of LDH, MDA, Fe2+ and GSH A. Detection of cell survival rate in each treatment group; B. Comparison of LDH release in each treatment group; C. Comparison of MDA content in each treatment group; D. Comparison of Fe2+ content in each treatment group; E. Comparison of GSH content in each treatment group"
Fig. 5
ROS fluorescence intensity in each treatment groups(200×) A. Fluorescence microscope was used to observe the fluorescence intensity of ROS in the positive signal group and the experimental group Ⅰ; B. ROS data analysis of positive signal group and experimental group Ⅰ; C. The fluorescence intensity of ROS in experimental group Ⅱ was observed by fluorescence microscope; D. ROS data analysis of experimental group Ⅱ; E. Fluorescence microscopy was used to observe the fluorescence intensity of ROS in the experimental group Ⅲ; F. ROS data analysis of experimental group Ⅲ"
Fig. 6
JC-1 expression in each treatment groups(200×) A. Fluorescence microscopy was used to observe the fluorescence intensity of JC-1 in the positive control group and the experimental group Ⅰ; B. fluorescence intensity data analysis of positive control group and experimental group Ⅰ; C. Fluorescence microscope was used to observe the fluorescence intensity of JC-1 in experimental group Ⅱ; D. fluorescence intensity data analysis of experimental group Ⅱ treatment group; E. Fluorescence microscopy was used to observe the fluorescence intensity of JC-1 in the experimental group Ⅲ; F. Experimental group Ⅲ fluorescence intensity data analysis"
Fig. 7
The effect of Erastin and rCK14-3-3 protein on the expression of Nrf2, SLC7A11 and GPX4 protein in MAC-T A. Western blot results of Nrf2, SLC7A11 and GPX4 proteins in MAC-T of positive control group and experimental group Ⅰ; B. Data analysis of Nrf2, SLC7A11 and GPX4 protein expression in MAC-T of positive control group and experimental group Ⅰ"
Fig. 8
The effect of Ferrostatin-1 on the expression of Nrf2, SLC7A11 and GPX4 protein in MAC-T A. Western blot results of Nrf2, SLC7A11 and GPX4 proteins in MAC-T of experimental group Ⅰ and experimental group Ⅱ; B. Data analysis of Nrf2, SLC7A11 and GPX4 protein expression in MAC-T of experimental group Ⅰ and experimental group Ⅱ"
Fig. 9
The effect of ML385 on the expression of Nrf2, SLC7A11 and GPX4 protein in MAC-T A. Western blot results of Nrf2, SLC7A11 and GPX4 proteins in MAC-T of experimental group Ⅰ and experimental group Ⅲ; B. Data analysis of Nrf2, SLC7A11 and GPX4 protein expression in MAC-T of experimental group Ⅰ and experimental group Ⅲ"
Fig. 10
Immunofluorescence expression of GPX4 in each treatment group(200×) A. Fluorescence microscope was used to observe the fluorescence intensity of GPX4 in MAC-T cells of positive control group and experimental group Ⅰ; B. fluorescence intensity data analysis of positive control group and experimental group Ⅰ; C. Fluorescence microscope was used to observe the fluorescence intensity of MAC-T GPX4 in experimental group Ⅱ; D. experimental group Ⅱ fluorescence intensity data analysis; E. Fluorescence microscope was used to observe the fluorescence intensity of MAC-T GPX4 in experimental group Ⅲ; F. Experimental group Ⅲ fluorescence intensity data analysis"
| 1 |
DUJ,WANX Y,LUOH X,et al.Epidemiological investigation of non-albicans Candida species recovered from mycotic mastitis of cows in Yinchuan, Ningxia of China[J].BMC Vet Res,2018,14(1):251.
doi: 10.1186/s12917-018-1564-3 |
| 2 |
ANURADHAK,ALKAT,NEETUT.Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics[J].Mol Neurobiol,2014,49(1):590-600.
doi: 10.1007/s12035-013-8544-1 |
| 3 |
LIJ H,LIUK C,LIUY,et al.Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity[J].Nat Immunol,2013,14(8):793-803.
doi: 10.1038/ni.2647 |
| 4 | ANGLAS,SHABANAS M,BENL,et al.Extracellular vesicles from infected cells: potential for direct pathogenesis[J].Front Microbiol,2015,6,1132. |
| 5 |
倪爱心,麻慧,陈继兰.寄生虫来源的外泌体研究进展[J].畜牧兽医学报,2019,50(5):909-917.
doi: 10.11843/j.issn.0366-6964.2019.05.002 |
|
NIA X,MAH,CHENJ L.Research progress of parasite-derived exosomes[J].Acta Veterinaria et Zootechnica Sinica,2019,50(5):909-917.
doi: 10.11843/j.issn.0366-6964.2019.05.002 |
|
| 6 | 杜军. 克柔念珠菌两相损伤奶牛乳腺上皮细胞机制研究[D]. 银川: 宁夏大学, 2021. |
| DU J. Study on the mechanism of dairy cow mammary epithelial cell injury caused by two phase of Candida krusei infection[D]. Yinchuan: Ningxia University, 2021. (in Chinese) | |
| 7 | 李艳娥,古小彬.寄生虫14-3-3蛋白的生物学功能研究进展[J].四川农业大学学报,2023,41(6):1134-1139. |
| LIY E,GUX B.A review on the biological functions of 14-3-3 in parasites[J].Journal of Sichuan Agricultural University,2023,41(6):1134-1139. | |
| 8 | 胡志凯. 谷氨酰胺经14-3-3蛋白调控炎症反应[D]. 南昌: 南昌大学, 2023. |
| HU Z K. Glutamine regulates inflammation through 14-3-3 protein[D]. Nanchang: Nanchang University, 2023. (in Chinese) | |
| 9 | 蔡明玉. 克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞炎性及铁死亡分子机制研究[D]. 银川: 宁夏大学, 2023. |
| CAI M Y. The molecular mechanism of Candida krusei 14-3-3 protein regulates iron death in bovine mammary epithelial cells through autophagy[D]. Yinchuan: Ningxia University, 2023. (in Chinese) | |
| 10 |
SCOTTJ D,KATHRYNM L,MICHAELR L,et al.Ferroptosis: An iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
doi: 10.1016/j.cell.2012.03.042 |
| 11 |
TANGD L,CHENX,KANGR,et al.Ferroptosis: molecular mechanisms and health implications[J].Cell Res,2021,31(2):107-125.
doi: 10.1038/s41422-020-00441-1 |
| 12 | 马臣杰,张雯,曾瑾,等.铁死亡调控机制的研究进展[J].生物学杂志,2021,38(4):109-113. |
| MAC J,ZHANGW,ZENGJ,et al.The molecular mechanisms of ferroptosis[J].Journal of Biology,2021,38(4):109-113. | |
| 13 |
JIANGX J,STOCKWELLB R,CONRADM.Ferroptosis: mechanisms, biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282.
doi: 10.1038/s41580-020-00324-8 |
| 14 |
SUZYV T,FRANKM T.Iron and cancer: more ore to be mined[J].Nat Rev Cancer,2013,13(5):342-355.
doi: 10.1038/nrc3495 |
| 15 |
章心婷,邱文粤,庞晓玥,等.积雪草酸通过抑制氧化应激和铁死亡减轻脂多糖诱导的肉鸡心肌损伤的研究[J].畜牧兽医学报,2024,55(4):1787-1799.
doi: 10.11843/j.issn.0366-6964.2024.04.040 |
|
ZHANGX T,QIUW Y,PANGX Y,et al.Effect of asiatic acid alleviating myocardial injury caused by lipopolysaccharide through inhibiting oxidative stress and ferroptosis in broilers[J].Acta Veterinaria et Zootechnica Sinica,2024,55(4):1787-1799.
doi: 10.11843/j.issn.0366-6964.2024.04.040 |
|
| 16 |
WANGF,WANGR L,LIUH F.The acute pulmonary toxicity in mice induced by Staphylococcus aureus, particulate matter, and their combination[J].Exp Anim,2019,68(2):159-168.
doi: 10.1538/expanim.18-0102 |
| 17 | WILLIAMN B,ANDREWJ M,VENKATARAMANA,et al.Arachidonic acid kills Staphylococcus aureus through a lipid peroxidation mechanism[J].MBio,2019,10(05):e01333-19. |
| 18 | SOEY M,SAMMYB,TIMOTHYP S,et al.Intracellular Staphylococcus aureus and host cell death pathways[J].Cell Microbiol,2021,23(5):e13317. |
| 19 |
LIUP F,FENGY T,LIH W,et al.Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J].Cell Mol Biol Lett,2020,25,10.
doi: 10.1186/s11658-020-00205-0 |
| 20 | 李姗. 新孢子虫胞外囊泡的分离鉴定及其对宿主TLR2信号通路的免疫调控机制[D]. 长春: 吉林大学, 2019. |
| LI S. Isolation and identification of extracellular vesicles of Neospora caninum and its immunoregulatory mechanism on host mediated by TLR2 signaling pathway[D]. Changchun: Jilin University, 2019. (in Chinese) | |
| 21 |
温雪,许琬雪,付壹彤,等.铁死亡与炎症相关性研究进展[J].畜牧兽医学报,2025,56(8):3666-3677.
doi: 10.11843/j.issn.0366-6964.2025.08.011 |
|
WENX,XUW X,FUY T,et al.Research Progress on the relationship between Ferroptosis and inflammation[J].Acta Veterinaria et Zootechnica Sinica,2025,56(8):3666-3677.
doi: 10.11843/j.issn.0366-6964.2025.08.011 |
|
| 22 | 温雪,郝长来.铁死亡及其调控机制的研究进展[J].承德医学院学报,2022,39(4):329-332. |
| WENX,HAOC L.Research progress on ferroptosis and its regulatory mechanism[J].Journal of Chengde Medical College,2022,39(4):329-332. | |
| 23 |
毛鹏,王志浩,李建基,等.铁死亡在细菌性感染中的研究进展[J].畜牧兽医学报,2023,54(6):2280-2287.
doi: 10.11843/j.issn.0366-6964.2023.06.008 |
|
MAOP,WANGZ H,LIJ J,et al.Research Progress of Ferroptosis in Bacterial Infection[J].Acta Veterinaria et Zootechnica Sinica,2023,54(6):2280-2287.
doi: 10.11843/j.issn.0366-6964.2023.06.008 |
|
| 24 |
SUNY R,HEL B,WANGT Y,et al.Activation of p62-Keap1-Nrf2 pathway protects 6-Hydroxydopamine-induced ferroptosis in dopaminergic cells[J].Mol Neurobiol,2020,57(11):4628-4641.
doi: 10.1007/s12035-020-02049-3 |
| 25 | 郑明悦,周红光,庄育培,等.基于Nrf2/SLC7A11/GPX4信号通路探讨附芍地芩方抗结直肠癌作用机制[J].南京中医药大学学报,2024,40(5):457-468. |
| ZHENGM Y,ZHOUH G,ZHUANGY P,et al.Exploring the mechanism of anti-colorectal cancer action of Fushao Diqin decoction based on the Nrf2/SLC7A11/GPX4 signaling pathway[J].Journal of Nanjing University of Traditional Chinese Medicine,2024,40(5):457-468. | |
| 26 |
URSINIF,MAIORINOM.Lipid peroxidation and ferroptosis: The role of GSH and GPx4[J].Free Radic Biol Med,2020,152,175-185.
doi: 10.1016/j.freeradbiomed.2020.02.027 |
| 27 |
XIEG G,LIZ S,ERW,et al.Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis[J].J Nat Med,2021,75(3):540-552.
doi: 10.1007/s11418-021-01491-4 |
| 28 |
WANGY L,YANS,LIUX M,et al.PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway[J].Cell Death Differ,2022,29(10):1982-1995.
doi: 10.1038/s41418-022-00990-5 |
| 29 | 朱利,吴鸿飞.铁死亡在动脉粥样硬化中的作用及中医药干预研究进展[J].中国实验方剂学杂志,2023,29(2):244-252. |
| ZHUL,WUH F.Effect of ferroptosis on atherosclerosis and Chinese medicine intervention: A review[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,20(2):244-252. | |
| 30 |
KAJARABILL,NAROAL D,GLADYSO.Programmed cell-death by ferroptosis: Antioxidants as mitigators[J].Int Mol Sci,2019,20(19):4968.
doi: 10.3390/ijms20194968 |
| 31 |
PRANAVIK,LIZ,GANB Y.Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J].Protein Cell,2021,12(8):599-620.
doi: 10.1007/s13238-020-00789-5 |
| 32 |
GIOVANNIC F,SCOTTJ D.GPX4 at the crossroads of lipid homeostasis and ferroptosis[J].Proteomics,2019,19(18):e1800311.
doi: 10.1002/pmic.201800311 |
| 33 | 冯帮海,梅鸿,覃松,等.铁死亡在急性呼吸窘迫综合征作用机制中的研究进展[J].中国现代医学杂志,2022,32(13):63-68. |
| FENGB H,MEIH,QINS,et al.Research progress on the mechanism of ferroptosis in acute respiratory distress syndrome[J].China Journal of Modern Medicine,2022,32(13):63-68. | |
| 34 | 赵琪琪,杜雪芹,刘松华,等.SLC7A11表达与双硫死亡、铁死亡及肿瘤关系的研究进展[J].江苏大学学报(医学版),2023,33(5):398-403. |
| ZHAOQ Q,DUX Q,LIUS H,et al.Research progress on the relationship between SLC7A11 expression and disulfide death, ferroptosis and tumors[J].Journal of Jiansu University (Medicine Edition),2023,33(5):398-403. | |
| 35 |
SCOTTJ D,DARPANN P,MATTHEWW,et al.Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J].ELife,2014,3,e02523.
doi: 10.7554/eLife.02523 |
| 36 | 张天阳,徐文秀,秦昕宇,等.铁死亡在新生儿缺氧缺血性脑损伤中的作用机制研究进展[J].中国全科医学,2024,28(6):666-672. |
| ZHANGT Y,XUW X,QINX Y,et al.Research progress on the mechanism of ferroptosis in neonatal hypoxicischemic brain damage[J].Chinese General Practice,2024,28(6):666-672. | |
| 37 |
HER Y,LIUB H,XIONGR,et al.Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury[J].Cell Death Discov,2022,8(1):43.
doi: 10.1038/s41420-021-00807-3 |
| 38 | 孙晟杰,涂画,唐励静,等.铁死亡诱导剂和抑制剂的研究进展[J].中国药理学与毒理学杂志,2020,34(8):623-633. |
| SUNS J,TUH,TANGL J,et al.Research progress in inducers and inhibitors of ferroptosis[J].Chinese Journal of Pharmacology and Toxicology,2020,34(8):623-633. | |
| 39 |
CHUJ,LIUC X,SONGR,et al.Ferrostatin-1 protects HT-22 cells from oxidative toxicity[J].Neural Regen Res,2020,15(3):528-536.
doi: 10.4103/1673-5374.266060 |
| 40 | 程梦妍, 刘学聪, 赵明明, 等. 布鲁氏菌引发巨噬细胞铁死亡抑制其胞内寄生[J/OL]. 中国动物传染病学报, 2024: 1-10[2025-08-10]. https://doi.org/10.19958/j.cnki.cn31-2031/s.20240306.004. |
| CHENG M Y, LIU X C, ZHAO M M, et al. Brucella triggers ferroptosis in macrophages to suppress intracellular parasitism[J/OL]. Chinese Journal of Animal Infectious Diseases, 2024: 1-10[2025-08-10]. (in Chinese) |
| [1] | YANG Wenzhe, WANG Jinhao, ZHAO Zichen, ZHAO Tong, PAN Feilong, CHEN Fangfang, SHAO Wenqi, LIU Kexiang, ZHAO Shuchen, ZHAO Lijia. Analysis of the Impact of Curcumin on the Ferroptosis Pathway in Alleviating the Inflammatory Response Induced by LPS in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4730-4740. |
| [2] | WEN Xue, XU Wanxue, FU Yitong, YANG Jie, FU Hongyu, FAN Ruifeng. Research Progress on the Relationship between Ferroptosis and Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3666-3677. |
| [3] | GAO Linna, JIANG Yingying, WANG Yue, SHI Qianqian, AN Zhenjiang, WANG Huili, SHEN Yangyang, CHEN Kunlin, ZHANG Leying. Construction of a Whole Genome Knockout Library of bMECs Based on CRISPR/Cas9 Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2711-2723. |
| [4] | ZHAO Ying, WANG Jinglei, WANG Meng, WANG Libin, ZHANG Qian, LI Zhijie, MA Xin, YU Sijiu, PAN Yangyang. Preparation and Characterization of Forsythiaside A and Kaempferol Encapsulated in Milk-derived Exosomes and Evaluation of Anti-inflammatory Effects in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2481-2495. |
| [5] | WANG Gongmin, WU Gang, CHEN Xueqing, CHEN Xiwen, XU Jiajing, ZHANG Yuanshu. Analysis of Ferroptosis Induced by Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5852-5863. |
| [6] | HU Ximin, LUORENG Zhuoma, ZHOU Ran, LI Yuhang, WANG Xingping. Role of lncRNA PFN1-AS1 in the Inflammatory Response of Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5875-5887. |
| [7] | WANG Yi, HOU Lulu, FANG Fei, GAO Linying, XIE Shumin, WANG Yu. Fluoride Induced Small Intestine Oxidative Damage in Broilers via Autophagy and Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 442-454. |
| [8] | Hongyu FU, Yue LI, Han CUI, Jiuzhi LI, Wanxue XU, Xi WANG, Ruifeng FAN. The Mechanism of Long-Chain acyl-CoA Synthetase 4-mediated Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3792-3801. |
| [9] | ZHANG Xinting, QIU Wenyue, PANG Xiaoyue, SU Yiman, YE Jiali, HUANG Jianjia, ZHOU Shuilian, TANG Zhaoxin, WANG Rongmei, SU Rongsheng. Effect of Asiatic Acid Alleviating Myocardial Injury Caused by Lipopolysaccharide through Inhibiting Oxidative Stress and Ferroptosis in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1787-1799. |
| [10] | KANG Fangyuan, LIU Zhentao, WU Kuixian, NI Han, ZHONG Kai, LI Heping, YANG Guoyu, HAN Liqiang. Regulation of Lipophagy on the Size of Lipid Droplets in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1095-1101. |
| [11] | WANG Hao, XIAO Jinlong, SHEN Jue, ZHAO Jingang, WANG Shuai, LIU Gen, ZHAO Ru, XIAO Peng, GAO Hong. New Ways of Cell Death—Ferroptosis and Cuproptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 461-470. |
| [12] | ZHANG Zixuan, ZHANG Ying, LI Zhijun, YANG Jingling, JIANG Zihao, HUANG Huamin, QI Xuefeng. The Effects of Bovine Viral Diarrhoea Virus (BVDV)-induced Ferroptosis on Virus Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5716-5724. |
| [13] | XIONG Zhiwei, WANG Yun, CAO Huabin, PENG Chengcheng, YANG Fan, DAI Xueyan, XING Chenghong, LIU Lingli, LI Jingni, HU Aiming. Molybdenum and Cadmium Combined Exposure Mediates Oxidative Stress and Ferroptosis Induced Kidney Damage in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5802-5812. |
| [14] | MAO Peng, WANG Zhihao, LI Jianji, CUI Luying, ZHU Guoqiang, MENG Xia, DONG Junsheng, WANG Heng. Research Progress of Ferroptosis in Bacterial Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2280-2287. |
| [15] | CAI Mingyu, ZHANG Hailong, HAI Zhenzhen, QIAO Yarui, DU Jun, ZHOU Xuezhang. The Inflamed Molecular Mechanism Induced by Recombined 14-3-3 Protein of Candida krusei on Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1679-1689. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||