Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (10): 3570-3581.doi: 10.11843/j.issn.0366-6964.2022.10.029
• PREVENTIVE VETERINARY MEDICINE • Previous Articles Next Articles
ZHANG Siyu1,2, WANG Yujiong1,2*, ZENG Jin1,2*
Received:
2022-02-17
Online:
2022-10-23
Published:
2022-10-26
CLC Number:
ZHANG Siyu, WANG Yujiong, ZENG Jin. Transcriptome Analysis of Intestinal Injury Induced by Clostridium perfringens Type C Exotoxin in Mouse[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3570-3581.
[1] | FLORES-DÍAZ M, MONTURIOL-GROSS L, NAYLOR C, et al. Bacterial sphingomyelinases and phospholipases as virulence factors[J]. Microbiol Mol Biol Rev, 2016, 80(3):597-628. |
[2] | ROOD J I, ADAMS V, LACEY J, et al. Expansion of the Clostridium perfringens toxin-based typing scheme[J]. Anaerobe, 2018, 53:5-10. |
[3] | PETIT L, GIBERT M, POPOFF M R. Clostridium perfringens:toxinotype and genotype[J]. Trends Microbiol, 1999, 7(3):104-110. |
[4] | LUO R R, HUANG X Y, YAN Z Q, et al. Identification and characterization of MAPK signaling pathway genes and associated lncRNAs in the ileum of piglets infected by Clostridium perfringens type C[J]. BioMed Res Int, 2020, 2020:8496872. |
[5] | MVLLER K E, ROZGONYI F. Pathogenesis, clinical characteristics, diagnostics and treatment of bacterial foodborne diseases[J]. Orv Hetil, 2020, 161(48):2019-2028. |
[6] | MARLOW M A, LUNA-GIERKE R E, GRIFFIN P M, et al. Foodborne disease outbreaks in correctional institutions-United States, 1998-2014[J]. Am J Public Health, 2017, 107(7):1150-1156. |
[7] | GRASS J E, GOULD L H, MAHON B E. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010[J]. Foodborne Pathog Dis, 2013, 10(2):131-136. |
[8] | SCALLAN E, HOEKSTRA R M, ANGULO F J, et al. Foodborne illness acquired in the United States——major pathogens[J]. Emerg Infect Dis, 2011, 17(1):7-15. |
[9] | 李 颖, 李长青, 王彦波, 等. 一起由C型产气荚膜梭菌引起的食源性疾病致病因子检测[J]. 中国卫生检验杂志, 2016, 26(23):3379-3381.LI Y, LI C Q, WANG Y B, et al. Detection of food borne pathogenic factors caused by Clostridium perfringens[J]. Chinese Journal of Health Laboratory Technology, 2016, 26(23):3379-3381. (in Chinese) |
[10] | ABD EL-HACK M E, EL-SAADONY M T, ELBESTAWY A R, et al. Necrotic enteritis in broiler chickens:disease characteristics and prevention using organic antibiotic alternatives-a comprehensive review[J]. Poult Sci, 2022, 101(2):101590. |
[11] | 曾 瑾. 产气荚膜梭菌Beta2毒素的细胞毒性与致病机理研究[D]. 银川:宁夏大学, 2017.ZENG J. The cytotoxicity and pathogenesis of Beta2 toxin of Clostridium perfringens[D]. Yinchuan:Ningxia University, 2017. (in Chinese) |
[12] | YANG Q, LIU J, WANG X F, et al. Identification of an intestinal microbiota signature associated with the severity of necrotic enteritis[J]. Front Microbiol, 2021, 12:703693. |
[13] | GU C Q, LILLEHOJ H S, SUN Z F, et al. Characterization of virulent netB+/tpeL+ Clostridium perfringens strains from necrotic enteritis-affected broiler chicken farms[J]. Avian Dis, 2019, 63(3):461-467. |
[14] | WADE B, KEYBURN A L, SEEMANN T, et al. Binding of Clostridium perfringens to collagen correlates with the ability to cause necrotic enteritis in chickens[J]. Vet Microbiol, 2015, 180(3-4):299-303. |
[15] | 刘乐文. 盲肠mRNAs与miRNAs对鸡肠炎沙门氏菌感染的表达调控[D]. 泰安:山东农业大学, 2021.LIU L W. Regulation of mRNAS and miRNAs in the response to Salmonella enterica serovar Enteritidis infection in chicken cecum[D]. Tai'an:Shandong Agricultural University, 2021. (in Chinese) |
[16] | 张 旭, 郑 敏, 吴征卓, 等. 鸭肠炎病毒感染对鸭十二指肠转录组的影响[J]. 动物医学进展, 2020, 41(10):73-79.ZHANG X, ZHENG M, WU Z Z, et al. Duodenal transcriptome sequencing at different time points after duck enteritis virus infection in ducks[J]. Progress in Veterinary Medicine, 2020, 41(10):73-79. (in Chinese) |
[17] | 姜天团. C型产气荚膜梭菌致仔猪腹泻的蛋白质组学研究及其与转录组数据的联合分析[D]. 兰州:甘肃农业大学, 2019.JIANG T T. Proteomics study of piglet diarrhea caused by Clostridium perfringens type C and its combined analysis with transcriptome data[D]. Lanzhou:Gansu Agricultural University, 2019. (in Chinese) |
[18] | FERNANDEZ-MIYAKAWA M E, MARCELLINO R, UZAL F A. Clostridium perfringens type A toxin production in 3 commonly used culture media[J]. J Vet Diagn Invest, 2007, 19(2):184-186. |
[19] | MA M L, VIDAL J, SAPUTO J, et al. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685[J]. mBio, 2011, 2(1):e00338-10. |
[20] | 房晓文. 內蒙羊猝狙及羊快疫病原诊断报告[J]. 畜牧兽医学报, 1956, 1(1):19-31.FANG X W. Studies on "struck" and "braxy" in sheep and goats in Inner Mongolia[J]. Acta Veterinaria Et Zootechnica Sinica, 1956, 1(1):19-31. (in Chinese) |
[21] | FISHER D J, FERNANDEZ-MIYAKAWA M E, SAYEED S, et al. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model[J]. Infect Immun, 2006, 74(9):5200-5210. |
[22] | MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008, 5(7):621-628. |
[23] | LACHMANN A, CLARKE D J B, TORRE D, et al. Interoperable RNA-Seq analysis in the cloud[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6):194521. |
[24] | LIAO Y, SMYTH G K, SHI W. Feature Counts:an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7):923-930. |
[25] | LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550. |
[26] | The Gene Ontology Consortium. The gene ontology resource:20 years and still GOing strong[J]. Nucl Acids Res, 2019, 47(D1):D330-D338. |
[27] | YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-Seq:accounting for selection bias[J]. Genome Biol, 2010, 11(2):R14. |
[28] | KANEHISA M, FURUMICHI M, TANABE M, et al. KEGG:new perspectives on genomes, pathways, diseases and drugs[J]. Nucl Acids Res, 2017, 45(D1):D353-D361. |
[29] | MARKS S L, KATHER E J. Bacterial-associated diarrhea in the dog:a critical appraisal[J]. Vet Clin North Am:Small Anim Pract, 2003, 33(5):1029-1060. |
[30] | ZUO T, KAMM M A, COLOMBEL J F, et al. Urbanization and the gut microbiota in health and inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7):440-452. |
[31] | NELL S, SUERBAUM S, JOSENHANS C. The impact of the microbiota on the pathogenesis of IBD:lessons from mouse infection models[J]. Nat Rev Microbiol, 2010, 8(8):564-577. |
[32] | GUAN Q D. A comprehensive review and update on the pathogenesis of inflammatory bowel disease[J]. J Immunol Res, 2019, 2019:7247238. |
[33] | ROOS S, WYDER M, CANDI A, et al. Binding studies on isolated porcine small intestinal mucosa and in vitro toxicity studies reveal lack of effect of C. perfringens beta-toxin on the porcine intestinal epithelium[J]. Toxins, 2015, 7(4):1235-1252. |
[34] | THIEL A, MOGEL H, BRUGGISSER J, et al. Effect of Clostridium perfringens β-toxin on platelets[J]. Toxins (Basel), 2017, 9(10):336. |
[35] | AUTHEMAN D, WYDER M, POPOFF M, et al. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells[J]. PLoS One, 2013, 8(5):e64644. |
[36] | NAGAHAMA M, SHIBUTANI M, SEIKE S, et al. The p38 MAPK and JNK pathways protect host cells against Clostridium perfringens beta-toxin[J]. Infect Immun, 2013, 81(10):3703-3708. |
[37] | SOLANKI A K, PANWAR D, KAUSHIK H, et al. Molecular docking analysis of P2X7 receptor with the beta toxin from Clostridium perfringens[J]. Bioinformation, 2020, 16(8):594-601. |
[38] | SUN X M, ZHOU R X, LEI Y P, et al. The ligand-gated ion channel P2X7 receptor mediates NLRP3/caspase-1-mediated pyroptosis in cerebral cortical neurons of juvenile rats with sepsis[J]. Brain Res, 2020, 1748:147109. |
[39] | ZHAO S H, ZHOU Y H, FAN Y, et al. Involvement of purinergic 2X4 receptor in glycoprotein 120-induced pyroptosis in dorsal root ganglia[J]. J Neurochem, 2019, 151(5):584-594. |
[40] | YUAN Y H, DING D K, ZHANG N, et al. TNF-α induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6[J]. Cell Cycle, 2018, 17(11):1390-1402. |
[41] | BRADLEY J R. TNF-mediated inflammatory disease[J]. J Pathol, 2008, 214(2):149-160. |
[42] | SUCHODOLSKI J S. Companion animals symposium:microbes and gastrointestinal health of dogs and cats[J]. J Anim Sci, 2011, 89(5):1520-1530. |
[43] | HU X R, ZHANG K, CHEN Z Q, et al. The HMGB1-IL-17A axis contributes to hypoxia/reoxygenation injury via regulation of cardiomyocyte apoptosis and autophagy[J]. Mol Med Rep, 2018, 17(1):336-341. |
[44] | MCGEACHY M J, CUA D J, GAFFEN S L. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4):892-906. |
[45] | LI L L, DAI B, SUN Y H, et al. The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis[J]. Ann Transl Med, 2020, 8(11):674. |
[46] | LEI-LESTON A C, MURPHY A G, MALOY K J. Epithelial cell inflammasomes in intestinal immunity and inflammation[J]. Front Immunol, 2017, 8:1168. |
[47] | OZAKI E, CAMPBELL M, DOYLE S L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases:current perspectives[J]. J Inflamm Res, 2015, 8:15-27. |
[1] | CHEN Zhe, QU Xiaolu, GUO Binbin, SUN Xuefeng, YAN Leyan. Study on Candidate Genes for Green Light Affecting Early Development of Goose Embryo Heart Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1978-1988. |
[2] | LIU Jiahui, WU Kaikai, WANG Lei, ZHANG Kang, HAN Songwei, CHEN Fubin, XU Guowei, GUO Zhiting, GU Xueyan, ZHANG Jingyan, LI Jianxi. Protective Effects of Astragalus Polysaccharides, Saponins and Probiotic Compounds on Intestinal Tract of Broilers Infected with E.coli [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2241-2252. |
[3] | XU Junjie, ZHANG Lutong, WANG Jinjie, CHEN Xiaochen, HE Weixian, CAI Chuanjiang, CHU Guiyan, YANG Gongshe. Exploring the Effect of Epimedium on Estrus of Gilts Based on Multiomics and Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1615-1628. |
[4] | TIAN Rui, XU Sixiang, XIE Feng, LIU Guangjin, WANG Gang, LI Qingxia, DAI Lei, XIE Guoxin, ZHANG Qiongwen, LU Yajing, WANG Guangwen, WANG Jinxiu, ZHANG Wei. Bioinformatics Analysis of the Genome of Clostridium perfringens Isolated from Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1707-1715. |
[5] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[6] | GAO Yawei, PENG Di, SUN Zhaoyang, YAN Ziyue, CUI Kai, MA Zefang. Mining the Molecular Mechanism of Exogenous Melatonin Affecting the Development of Mink Ovary Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 607-618. |
[7] | LIU Yili, TANG Jiao, MIN Qi, YANG Lu, WANG Zening, HU Lian, ZHAO Di, JIANG Mingfeng. Mining Key Candidate Genes of Development and Metabolism in Yak Abomasum Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 153-168. |
[8] | ZHOU Wenhui, BAO Hongxia, WANG Junhao, HUANG Yuanling, WANG Wenhui, HAO Haihong. Therapeutic Effect of Licorice Chalcone A in Combination with Three Antibiotics on Clostridium perfringens Infection in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 334-345. |
[9] | CHEN Xi, WANG Yi, WANG Jiali, YANG Xin, SONG Junke, ZHAO Guanghui. Establishment of Duplex PCR Methods for Detection of Eimeria necatrix and Clostridium perfringens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3985-3990. |
[10] | HU Ting, ZHANG Yonghong, HOU Xiaolin, YAO Hua, CUI Defeng, PAN Zaozao, ZHANG Lingyu, ZHANG Jiaxi, WU Qiong. The Effects of Bisphenol A on Inflammation and Amino Acid Metabolism Pathways in Porcine Testis Sertoli Cells Based on Transcriptome Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2858-2871. |
[11] | LIU Hang, WANG Huanhuan, GE Ying, ZHANG Lei, ZHANG Weiwu, WEI Yinghui, LI Qinghai, FAN Jinghui, ZHANG Xuedong. Screening of Candidate Genes of Skin Color of Black-Bone Chicken Based on Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2320-2329. |
[12] | ZENG Chengrong, WANG Na, BI Wenwen, MEI Shihui, HE Guangxia, ZHANG Junjie, CHEN Ze, WEN Ming, ZHOU Bijun. Metabonomics Analysis of Duck Ileum Infected by Clostridium perfringens Type A [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2555-2569. |
[13] | BAI Lu, WANG Mengjie, MA Xiaochun, HE Zhengxiao, KONG Fuli, LIU Dawei, YING Fan, ZHU Dan, ZHAO Guiping, WEN Jie, LIU Ranran. Study of the Alteration of Wooden Breast Histological and Molecular Regulatory Pathways in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1915-1926. |
[14] | WANG Meihui, ZHONG Zhenyu, BAI Jiade, SHAN Yunfang, CHENG Zhibin, ZHANG Qingxun, MENG Yuping, DONG Yulan, GUO Qingyun. Transcriptomic Analysis of Key Genes and Pathways in Deer Gut Infected by Clostridium perfringens Type C [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2147-2157. |
[15] | SUN Meijie, CAO Liwen, ZHENG Wenjin, SHEN Junshi, ZHU Weiyun. Effect of Dietary Urea Supplementation on Liver Ammonia Metabolism in Fattening Hu Lambs Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1148-1159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||