[1] LUCEY B P, HUTCHINS G M. William H. Welch, MD, and the discovery of Bacillus welchii[J]. Arch Pathol Lab Med, 2004, 128(10):1193-1195. [2] BRYNESTAD S, GRANUM P E. Clostridium perfringens and foodborne infections[J]. Int J Food Microbiol, 2002, 74(3):195-202. [3] KOMATSU H, INUI A, SOGO T, et al. Clostridium perfringens[J]. Nihon Rinsho, 2012, 70(8):1357-1361. [4] VALLY H, GLASS K, FORD L, et al. Evaluation of a structured expert elicitation estimating the proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia[J]. Epidemiol Infect, 2016, 144(5):897-906. [5] MONMA C, HATAKEYAMA K, OBATA H, et al. Four foodborne disease outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens[J]. J Clin Microbiol, 2015, 53(3):859-867. [6] MEHDIZADEH GOHARI I, NAVARRO M A, LI J H, et al. Pathogenicity and virulence of Clostridium perfringens[J]. Virulence, 2021, 12(1):723-753. [7] ROOD J I, ADAMS V, LACEY J, et al. Expansion of the Clostridium perfringens toxin-based typing scheme[J]. Anaerobe, 2018, 53:5-10. [8] GOOSSENS E, VERHERSTRAETEN S, VALGAEREN B R, et al. The C-terminal domain of Clostridium perfringens alpha toxin as a vaccine candidate against bovine necrohemorrhagic enteritis[J]. Vet Res, 2016, 47(1):52. [9] WU K, FENG H, WANG J, et al. Prevalence and antimicrobial resistance of Clostridium perfringens from animal sources[J]. World Notes on Antibiotics, 2022, 43(1):37-41. (in Chinese) 吴克, 冯航, 王娟, 等. 动物源产气荚膜梭菌的流行率与耐药性分析[J]. 国外医药(抗生素分册), 2022, 43(1):37-41. [10] HUANG D Q, WANG L X. New cattle breeds improvement of the existing problems and countermeasures[J]. World Tropical Agriculture Information, 2023(4):69-71. (in Chinese) 黄定庆, 王亮星. 雷琼黄牛品种改良中存在的问题和对策[J]. 世界热带农业信息, 2023(4):69-71. [11] WEI W C, WU X C, XIE W. Hereditary resource of Leizhou scalper and its application suggestions[J]. Guangdong Journal of Animal and Veterinary Science, 2006, 31(6):21-23. (in Chinese) 魏伍川, 吴肖晨, 谢婉. 雷州黄牛的遗传资源与利用建议[J]. 广东畜牧兽医科技, 2006, 31(6):21-23. [12] VAN ASTEN A J A M, VAN DER WIEL C W, NIKOLAOU G, et al. A multiplex PCR for toxin typing of Clostridium perfringens isolates[J]. Vet Microbiol, 2009, 136(3/4):411-412. [13] WICK R R, JUDD L M, GORRIE C L, et al. Unicycler:resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Comput Biol, 2017, 13(6):e1005595. [14] SEEMANN T. Prokka:rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14):2068-2069. [15] PAGE A J, CUMMINS C A, HUNT M, et al. Roary:rapid large-scale prokaryote pan genome analysis[J]. Bioinformatics, 2015, 31(22):3691-3693. [16] ROOD J I. Virulence genes of Clostridium perfringens[J]. Annu Rev Microbiol, 1998, 52:333-360. [17] TITBALL R W. Bacterial phospholipases C[J]. Microbiol Rev, 1993, 57(2):347-366. [18] HATHEWAY C L. Toxigenic clostridia[J]. Clin Microbiol Rev, 1990, 3(1):66-98. [19] ZHENG X L, DOU X M, HU D J, et al. The threat, prevention and control of Clostridium perfringens in cattle industry[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(8):211-214. (in Chinese) 郑晓丽, 窦贤明, 胡道俊, 等. 产气荚膜梭菌对养牛业的危害及其防制[J]. 中国畜牧兽医, 2010, 37(8):211-214. [20] GHARIEB R, SAAD M, ABDALLAH K, et al. Insights on toxin genotyping, virulence, antibiogram profiling, biofilm formation and efficacy of disinfectants on biofilms of Clostridium perfringens isolated from poultry, animals and humans[J]. J Appl Microbiol, 2021, 130(3):819-831. [21] LI J H, MCCLANE B A. Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene[J]. Appl Environ Microbiol, 2006, 72(7):4561-4568. [22] LACEY J A, JOHANESEN P A, LYRAS D, et al. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens:a review[J]. Avian Pathol, 2016, 45(3):302-307. [23] MATSUMURA Y. Multilocus sequence typing (MLST) analysis[J]. Rinsho Byori, 2013, 61(12):1116-1122. [24] HASHEMIAN S M R, FARHADI T, GANJPARVAR M. Linezolid:a review of its properties, function, and use in critical care[J]. Drug Des Devel Ther, 2018, 12:1759-1767. [25] ZHOU Y Q, LI J Y, SCHWARZ S, et al. Mobile oxazolidinone/phenicol resistance gene optrA in chicken Clostridium perfringens[J]. J Antimicrob Chemother, 2020, 75(10):3067-3069. [26] WU K, FENG H, WANG J, et al. Whole genome sequencing and molecular characterization analysis of Clostridium perfringens type D strains From Guanzhong dairy goats[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11):3967-3974. (in Chinese) 吴克, 冯航, 王娟, 等. 关中奶山羊源D型产气荚膜梭菌全基因组序列测定及其分子特征分析[J]. 畜牧兽医学报, 2022, 53(11):3967-3974. [27] HOELZER K, WONG N, THOMAS J, et al. Antimicrobial drug use in food-producing animals and associated human health risks:what, and how strong, is the evidence?[J]. BMC Vet Res, 2017, 13(1):211. |