[1] |
OHTANI K, SHIMIZU T. Regulation of toxin production in Clostridium perfringens[J]. Toxins (Basel), 2016, 8(7):207.
|
[2] |
ROOD J I, ADAMS V, LACEY J, et al. Expansion of the Clostridium perfringens toxin-based typing scheme[J]. Anaerobe, 2018, 53:5-10.
|
[3] |
HASSAN K A, ELBOURNE L D H, TETU S G, et al. Genomic analyses of Clostridium perfringens isolates from five toxinotypes[J]. Res Microbiol, 2015, 166(4):255-263.
|
[4] |
MVLLER K E, ROZGONYI F. Élelmiszer eredetü bakteriális megbetegedések patogenezise, klinikai jellegzetességei, diagnosztikája és kezelése[J]. Orv Hetil, 2020, 161(48):2019-2028.
|
[5] |
闫新华, 赵传芳, 王长凤, 等. 鹿肠毒血症的综合诊断[J]. 特种经济动植物, 2002, 5(10):38-39.YAN X H, ZHAO C F, WANG C F, et al. Comprehensive diagnosis of deer enterotoxemia[J]. Special Economic Animal and Plant, 2002, 5(10):38-39. (in Chinese)
|
[6] |
朱凯宗. 山东地区鹿肠毒血症的综合诊断[J]. 畜牧兽医科技信息, 2019(9):169-170.ZHU K Z. Comprehensive diagnosis of deer intestine toxemia in Shandong area[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2019(9):169-170. (in Chinese)
|
[7] |
张成林, 刘燕, 闫鹤, 等. 麋鹿发生C型魏氏梭菌病[J]. 野生动物, 2012, 33(5):260-263.ZHANG C L, LIU Y, YAN H, et al. C-type clostridia gastroenteritis in Pere David's deer Elaphurus davidianus[J]. Chinese Journal of Wildlife, 2012, 33(5):260-263. (in Chinese)
|
[8] |
UZAL F A, MCCLANE B A. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections[J]. Vet Microbiol, 2011, 153(1-2):37-43.
|
[9] |
ROOD J I, COLE S T. Molecular genetics and pathogenesis of Clostridium perfringens[J]. Microbiol Rev, 1991, 55(4):621-648.
|
[10] |
ODA M, TERAO Y, SAKURAI J, et al. Membrane-binding mechanism of Clostridium perfringens alpha-toxin[J]. Toxins (Basel), 2015, 7(12):5268-5275.
|
[11] |
VAN ASTEN A J A M, NIKOLAOU G N, GRÖNE A. The occurrence of cpb 2-toxigenic Clostridium perfringens and the possible role of the β2-toxin in enteric disease of domestic animals, wild animals and humans[J]. Vet J, 2010, 183(2):135-140.
|
[12] |
ZENG X, LIU B S, ZHOU J, et al. Complete genomic sequence and analysis of β2 toxin gene mapping of Clostridium perfringens JXJA17 isolated from piglets in China[J]. Sci Rep, 2021, 11(1):475.
|
[13] |
祁云霞, 刘永斌, 荣威恒. 转录组研究新技术:RNA-Seq及其应用[J]. 遗传, 2011, 33(11):1191-1202.QI Y X, LIU Y B, RONG W H. RNA-Seq and its applications:a new technology for transcriptomics[J]. Hereditas (Beijing), 2011, 33(11):1191-1202. (in Chinese)
|
[14] |
BROOKS A N, TURKARSLAN S, BEER K D, et al. Adaptation of cells to new environments[J]. Wiley Interdiscip Rev Syst Biol Med, 2011, 3(5):544-561.
|
[15] |
SONGER J G. Clostridial diseases of small ruminants[J]. Vet Res, 1998, 29(3-4):219-232.
|
[16] |
SONGER J G, UZAL F A. Clostridial enteric infections in pigs[J]. J Vet Diagn Invest, 2005, 17(6):528-536.
|
[17] |
MEHDIZADEH GOHARI I, NAVARRO M A, LI J H, et al. Pathogenicity and virulence of Clostridium perfringens[J]. Virulence, 2021, 12(1):723-753.
|
[18] |
UZAL F A, VIDAL J E, MCCLANE B A, et al. Clostridium perfringens toxins involved in mammalian veterinary diseases[J]. Open Toxinol J, 2010, 2:24-42.
|
[19] |
SHI H R, HUANG X Y, YAN Z Q, et al. Effect of Clostridium perfringens type C on TLR4/MyD88/NF-κB signaling pathway in piglet small intestines[J]. Microb Pathog, 2019, 135:103567.
|
[20] |
LEPP D, ZHOU Y, OJHA S, et al. Clostridium perfringens produces an adhesive pilus required for the pathogenesis of necrotic enteritis in poultry[J]. J Bacteriol, 2021, 203(7):e00578-20.
|
[21] |
POPOFF M R. Clostridial pore-forming toxins:powerful virulence factors[J]. Anaerobe, 2014, 30:220-238.
|
[22] |
NAGAHAMA M, OCHI S, ODA M, et al. Recent insights into Clostridium perfringens beta-toxin[J]. Toxins (Basel), 2015, 7(2):396-406.
|
[23] |
KIMURA J, ABE H, KAMITANI S, et al. Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction[J]. J Biol Chem, 2010, 285(1):401-408.
|
[24] |
LU M M, YUAN B H, YAN X H, et al. Clostridium perfringens -induced host-pathogen transcriptional changes in the small intestine of broiler chickens[J]. Pathogens, 2021, 10(12):1607.
|
[25] |
ABREU M T. Toll-like receptor signalling in the intestinal epithelium:how bacterial recognition shapes intestinal function[J]. Nat Rev Immunol, 2010, 10(2):131-144.
|
[26] |
KAUR A, KAUSHIK D, PIPLANI S, et al. TLR2 agonistic small molecules:detailed Structure-activity relationship, applications, and future prospects[J]. J Med Chem, 2021, 64(1):233-278.
|
[27] |
NOREEN M, ARSHAD M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility[J]. Immunol Res, 2015, 62(2):234-252.
|
[28] |
DU E C, WANG W W, GAN L, et al. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens[J]. J Anim Sci Biotechnol, 2016, 7:19.
|
[29] |
TAKEDA K, AKIRA S. TLR signaling pathways[J]. Semin Immunol, 2004, 16(1):3-9.
|
[30] |
LUO R R, YANG Q L, HUANG X Y, et al. Clostridium perfringens beta2 toxin induced in vitro oxidative damage and its toxic assessment in porcine small intestinal epithelial cell lines[J]. Gene, 2020, 759:144999.
|
[31] |
HUANG F C. The interleukins orchestrate mucosal immune responses to Salmonella infection in the intestine[J]. Cells, 2021, 10(12):3492.
|