Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (6): 2555-2569.doi: 10.11843/j.issn.0366-6964.2023.06.033
• PREVENTIVE VETERINARY MEDICINE • Previous Articles Next Articles
ZENG Chengrong1, WANG Na1, BI Wenwen1, MEI Shihui1, HE Guangxia1, ZHANG Junjie1, CHEN Ze1, WEN Ming1,2*, ZHOU Bijun1,2*
Received:
2022-11-07
Online:
2023-06-23
Published:
2023-06-16
CLC Number:
ZENG Chengrong, WANG Na, BI Wenwen, MEI Shihui, HE Guangxia, ZHANG Junjie, CHEN Ze, WEN Ming, ZHOU Bijun. Metabonomics Analysis of Duck Ileum Infected by Clostridium perfringens Type A[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2555-2569.
[1] | GOHARI I M, NAVARRO M A, LI J H, et al. Pathogenicity and virulence of Clostridium perfringens[J]. Virulence, 2021, 12(1):723-753. |
[2] | XU W P, WANG H R, LIU L X, et al. Prevalence and characterization of Clostridium perfringens isolated from different chicken farms in China[J]. Anaerobe, 2021, 72:102467. |
[3] | LIU Y, XIU L, MIAO Z M, et al. Occurrence and multilocus sequence typing of Clostridium perfringens isolated from retail duck products in Tai'an region, China[J]. Anaerobe, 2020, 62:102102. |
[4] | 王娜, 段世宇, 程振涛, 等. 产气荚膜梭菌唾液酸酶研究进展[J]. 中国兽医学报, 2022, 42(1):191-198.WANG N, DUAN S Y, CHENG Z T, et al. Research progress of sialidase from Clostridium perfringens[J]. Chinese Journal of Veterinary Science, 2022, 42(1):191-198. (in Chinese) |
[5] | NAVARRO M A, MCCLANE B A, UZAL F A. Mechanisms of action and cell death associated with Clostridium perfringens toxins[J]. Toxins (Basel), 2018, 10(5):212. |
[6] | ZHANG T F, ZHANG W T, AI D Y, et al. Prevalence and characterization of Clostridium perfringens in broiler chickens and retail chicken meat in central China[J]. Anaerobe, 2018, 54:100-103. |
[7] | ABDELRAHIM A M, RADOMSKI N, DELANNOY S, et al. Large-scale genomic analyses and toxinotyping of Clostridium perfringens implicated in foodborne outbreaks in france[J]. Front Microbiol, 2019, 10:777. |
[8] | XIU L, LIU Y, WU W, et al. Prevalence and multilocus sequence typing of Clostridium perfringens isolated from 4 duck farms in Shandong province, China[J]. Poult Sci, 2020, 99(10):5105-5117. |
[9] | 李胤豪, 张清月, 闫素梅. 代谢组学在反刍动物营养代谢应用中的研究进展[J]. 中国农业大学学报, 2022, 27(11):104-116.LI Y H, ZHANG Q Y, YAN S M. Advance in the application of metabolomics to nutrition research of ruminant livestock[J]. Journal of China Agricultural University, 2022, 27(11):104-116. (in Chinese) |
[10] | BEALE D J, PINU F R, KOUREMENOS K A, et al. Review of recent developments in GC-MS approaches to metabolomics-based research[J]. Metabolomics, 2018, 14(11):152. |
[11] | 杨霞, 蒲翠敏, 胡安东, 等. 鸭肠炎病毒感染对鸭肠道菌群多样性的影响[J]. 中国预防兽医学报, 2020, 42(8):772-778.YANG X, PU C M, HU A D, et al. Effects of duck enteritis virus infection on the intestinal microbiota diversity of ducks[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(8):772-778. (in Chinese) |
[12] | 毕文文, 田琴, 张黔东, 等. 鸭肠炎病毒和A型产气荚膜梭菌共感染对鸭十二指肠代谢组学影响的研究[J]. 中国预防兽医学报, 2022, 44(9):927-933.BI W W, TIAN Q, ZHANG Q D, et al. Effects of coinfection of duck enteritis virus and Clostridium perfringens type A on duodenal metabolomics in ducks[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(9):927-933. (in Chinese) |
[13] | 钟佳鑫, 王媛媛, 白璐璐, 等. 产气荚膜梭菌分子分型研究进展[J]. 疾病监测, 2022, 37(9):1248-1256.ZHONG J X, WANG Y Y, BAI L L, et al. Progress in research of molecular typing of Clostridium perfringens[J]. Disease Surveillance, 2022, 37(9):1248-1256. (in Chinese) |
[14] | TAKEHARA M, KOBAYASHI K, NAGAHAMA M. Toll-like receptor 4 protects against Clostridium perfringens infection in mice[J]. Front Cell Infect Microbiol, 2021, 11:633440. |
[15] | YADAV J P, KAUR S, DHAKA P, et al. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India:a scoping review[J]. Anaerobe, 2022, 77:102639. |
[16] | WANG T Q, FU X J, CHEN Q F, et al. Arachidonic acid metabolism and kidney inflammation[J]. Int J Mol Sci, 2019, 20(15):3683. |
[17] | 蔡亚玮, 刘建宏, 马宁. 花生四烯酸靶向代谢组学在炎症中的研究现状[J]. 中国临床药理学杂志, 2021, 37(19):2721-2723, 2728.CAI Y W, LIU J H, MA N. Research status of arachidonic acid-targeted metabonomics in inflammation[J]. The Chinese Journal of Clinical Pharmacology, 2021, 37(19):2721-2723, 2728. (in Chinese) |
[18] | ZHANG Q X, LYU W R, YU M B, et al. Investigating the inotropic effect of pyruvic acid on the isolated rat heart and its underlying mechanism[J]. Environ Toxicol Pharmacol, 2019, 71:103206. |
[19] | JAAP V M. Modeling biochemical aspects of energy metabolism in mammals[J]. J Nutr, 2002, 132(10):3195-3202. |
[20] | ZHANG J, GAO N F. Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation[J]. J Zhejiang Univ Sci B, 2007, 8(2):98-104. |
[21] | 闵昌国, 车东升, 张天芮. 丙酮酸对猪早期胚胎发育的影响[J]. 动物营养学报, 2021, 33(4):1832-1840.MIN C G, CHE D S, ZHANG T R. Effects of pyruvate on early embryonic development in pigs[J]. Chinese Journal of Animal Nutrition, 2021, 33(4):1832-1840. (in Chinese) |
[22] | LOPALCO A, DEEKEN R, DOUGLAS J, et al. Some preformulation studies of pyruvic acid and other α-Keto carboxylic acids in aqueous solution:pharmaceutical formulation implications for these peroxide scavengers[J]. J Pharm Sci, 2019, 108(10):3281-3288. |
[23] | KŁADNA A, MARCHLEWICZ M, PIECHOWSKA T, et al. Reactivity of pyruvic acid and its derivatives towards reactive oxygen species[J]. Luminescence, 2015, 30(7):1153-1158. |
[24] | VARMA S D, HEGDE K R, KOVTUN S. Oxidative damage to lens in culture:reversibility by pyruvate and ethyl pyruvate[J]. Ophthalmologica, 2006, 220(1):52-57. |
[25] | CHEN W, JIA Z Q, ZHU H, et al. Ethyl pyruvate inhibits peroxynitrite-induced DNA damage and hydroxyl radical generation:implications for neuroprotection[J]. Neurochem Res, 2010, 35(2):336-342. |
[26] | COMAI S, BERTAZZO A, BRUGHERA M, et al. Tryptophan in health and disease[J]. Adv Clin Chem, 2020, 95:165-218. |
[27] | MELHEM N J, TALEB S. Tryptophan: from diet to cardiovascular diseases[J]. Int J Mol Sci, 2021, 22(18):9904. |
[28] | 欧阳经鑫, 李秋粉, 周华, 等. 饲粮添加色氨酸对热应激肉鸡肝脏、肠道抗氧化能力和炎症反应的影响[J]. 中国兽医学报, 2022, 42(6):1256-1262, 1269.OUYANG J X, LI Q F, ZHOU H, et al. Effects of dietary tryptophan supplementation on antioxidant capacity and inflammatory response in liver and intestine of broilers subjected to heat stress[J]. Chinese Journal of Veterinary Science, 2022, 42(6):1256-1262, 1269. (in Chinese) |
[29] | 伏春燕, 董以雷, 阎佩佩, 等. 饲粮色氨酸水平对肉鸡生长性能、血清生化指标、器官指数及肠道组织形态的影响[J]. 动物营养学报, 2021, 33(10):5545-5556.FU C Y, DONG Y L, YAN P P, et al. Effects of dietary tryptophan levels on growth performance, serum biochemical indices, organ indexes and intestinal morphology of broilers[J]. Chinese Journal of Animal Nutrition, 2021, 33(10):5545-5556. (in Chinese) |
[30] | 林俊, 杜蕾, 齐仁立. 色氨酸及其代谢物调控肌肉生长发育的研究进展[J]. 中国畜牧杂志, 2022, 58(6):21-25.LIN J, DU L, QI R N. Research progress of tryptophan and its metabolites in regulating muscle growth and development[J]. Chinese Journal of Animal Science, 2022, 58(6):21-25. (in Chinese) |
[31] | 王荣蛟, 莫苏, 袁再美, 等. 肠道微生物的色氨酸代谢物对宿主肠道健康影响的研究进展[J]. 中国畜牧杂志, 2022, 58(3):7-12.WANG R J, MOE MOE S, YUAN Z M, et al. Research progress on the effects of tryptophan metabolites from intestinal microorganisms on host health[J]. Chinese Journal of Animal Science, 2022, 58(3):7-12. (in Chinese) |
[32] | GODIN A M, FERREIRA W C, ROCHA L T S, et al. Nicotinic acid induces antinociceptive and anti-inflammatory effects in different experimental models[J]. Pharmacol Biochem Behav, 2012, 101(3):493-498. |
[33] | JULIUS U, FISCHER S. Nicotinic acid as a lipid-modifying drug-a review[J]. Atheroscler Suppl, 2013, 14(1):7-13. |
[34] | ADAMS G G, IMRAN S, WANG S, et al. The hypoglycemic effect of pumpkin seeds, Trigonelline (TRG), Nicotinic acid (NA), and D-Chiro-inositol (DCI) in controlling glycemic levels in diabetes mellitus[J]. Crit Rev Food Sci Nutr, 2014, 54(10):1322-1329. |
[35] | JAIN N S, UTREJA D, KAUR K, et al. Novel derivatives of nicotinic acid as promising anticancer agents[J]. Mini-Rev Med Chem, 2021, 21(7):847-882. |
[36] | BOO Y C. Mechanistic basis and clinical evidence for the applications of nicotinamide (Niacinamide) to control skin aging and pigmentation[J]. Antioxidants (Basel), 2021, 10(8):1315. |
[37] | 王雪莹, 王之盛, 薛白, 等. 烟酸对热应激牦牛生长性能、营养物质表观消化率和血液指标的影响[J]. 动物营养学报, 2020, 32(5):2228-2240.WANG X Y, WANG Z S, XUE B, et al. Effects of niacin on growth performance, nutrient apparent digestibility and blood indexes of yak under heat-stress[J]. Chinese Journal of Animal Nutrition, 2020, 32(5):2228-2240. (in Chinese) |
[38] | MARTÍNEZ Y, LI X, LIU G, et al. The role of methionine on metabolism, oxidative stress, and diseases[J]. Amino Acids, 2017, 49(12):2091-2098. |
[39] | STOJANOVIĆ M, ŠĆEPANOVIĆL, TODOROVIĆ D, et al. Suppression of methionine-induced colon injury of young rats by cysteine and N-acetyl-L-cysteine[J]. Mol Cell Biochem, 2018, 440(1-2):53-64. |
[40] | SZCZUKO M, KIKUT J, KOMORNIAK N, et al. The role of arachidonic and linoleic acid derivatives in pathological pregnancies and the human reproduction process[J]. Int J Mol Sci, 2020, 21(24):9628. |
[1] | JIN Ruiyan, ZHANG Yang, HUANG Zhongshun, RAN Wei, DING Honglei. Phenotype Analysis of Antimicrobial Resistance and β-lactamase, PMQR Genes Detection of Escherichia coli Isolated from Mawang Ducks [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1738-1746. |
[2] | LIN Yan, HUANG Min, LI Xiujin, ZHANG Xumeng, HUANG Yunmao, TIAN Yunbo, WU Zhongping. Uncovering Genome-wide Copy Number Variations in 8 Duck Breeds Using Whole Genome Resequencing Data [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3700-3709. |
[3] | SUN Junfeng, PAN Jianqiu, ZHANG Zhuoshen, JIANG Danli, SHENG Xu, CHEN Rong, XU Danning, TIAN Yunbo, HUANG Yunmao. The Expression Patterns of OPN5-TSH-DIO2/DIO3 and VIP-PRL in the Process of Repressing the Testicular Function of Male Shanma Duck under Short-day Photoperiod [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2001-2012. |
[4] | CAO Xiuyun, LIU Jiwen, TANG Zhihui, ZHENG Ziyi, YAN Liping, SONG Suquan. Isolation, Identification and Pathogenicity Analysis of a Duck Adenovirus Type 3 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2050-2061. |
[5] | GUO Yanhong, TANG Jing, ZHANG Bo, CAO Junting, GUO Zhanbao, XIE Ming, ZHOU Zhengkui, WU Yongbao, WEN Zhiguo. Effects of Dietary Metabolizable Energy and Methionine Levels on Growth Performance, Carcass Characteristics, and Plasma Biochemical Parameters for Growing Pekin Ducks [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4278-4288. |
[6] | YANG Fuchun, LIU Rui, LI Xiaohan, GAO Li, LIU Changjun, QI Xiaole, CUI Hongyu, WANG Xiaomei, GAO Yulong, LI Kai. Construction of UL41 Gene Deletion Strain of Duck Enteritis Virus and Analysis of Its Replication Ability in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2689-2696. |
[7] | ZHANG Yuchen, LEI Yaping, NONG Bidan, PANG Xiaomin, ZHANG Miaomiao, LIU Xiaoli, GU Changqin, ZHANG Wanpo, CHENG Guofu, HU Xueying. Pathological Observation on the Ovary of Laying Ducks after Natural Infection with Duck Tembusu Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2326-2332. |
[8] | LIU Hongxiang, SHEN Yongjie, ZHANG Lihua, ZHANG Shuangjie, WANG Jing, ZHU Jie, CHEN Yuzhe, ZHU Chunhong, SONG Weitao, ZHANG Dan, TAO Zhiyun, XU Wenjuan, LIU Honglin, LI Huifang. Genetic Diversity Evaluation of Loumen Duck Based on Reduced-Representation Genome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1735-1748. |
[9] | WANG Yidan, CHEN Dishi, XIANG Hua, ZHANG Huanrong, REN Yupeng. Inhibitory Effect of Duck Interferon-induced Transmembrane Proteins against Proliferation of DHAV-3 [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 822-833. |
[10] | WANG Wei, HUA Min, ZHANG Yun, LI Tao, ZHANG Qiandong, YUAN Yang, CHENG Zhentao, WEN Ming. Effect of RNAi Targeting cofilin2 Gene on Duck Enteritis Virus Proliferation [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 983-989. |
[11] | LIU Tong, YANG Youyou, LIU Dapeng, YU Simeng, GUO Zhanbao, HU Jian, ZHAO Jinshan, ZHOU Zhengkui, HOU Shuisheng. Identification of Specific Volatile Flavor Compounds in Breast Muscle of Meat Duck [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 402-413. |
[12] | LIU Shuibing, FANG Wenjie, LI Yankai, ZHANG Wentao, LIU Sanfeng, CHEN Biao. Effect of Acute Cage Stress on the Metabolism of Laying Ducks Studied by Plasma Nontargeted Metabolomics [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4271-4282. |
[13] | ZOU Ronghua, WU Xiaoni, CHEN Qiwei, GONG Xiaowei, WANG Yanping, ZHENG Fuying, CHU Yuefeng. Effect of Enolase on Riemerella anatipestifer Invading Duck Brain Microvascular Endothelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4389-4397. |
[14] | ZHU Wenjun, CHEN Xingyong, LIU Le, LIU Zhengquan, ZHAO Yutong, GENG Zhaoyu. Fatty Acid Composition and Gene Expression of AMPK Signaling Pathway in Liver of Muscovy Duck at Different Egg-laying Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2429-2438. |
[15] | WANG Ruixiu, CHEN Zhongwei, LIU Qiang, ZHUANG Su. Effects of Synbiotics on Meat Quality, Antioxidant Capacity and Immune Function of Cherry Valley Ducks [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2522-2533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||