

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (10): 4787-4795.doi: 10.11843/j.issn.0366-6964.2025.10.003
• Review • Previous Articles Next Articles
GAO Zhimiao1,2(
), NI Haihua3, WANG Yanping1, ZHAO Xueyan1, LI Jingxuan1, WANG Jiying1,*(
), ZHANG Qin2,*(
)
Received:2025-02-17
Online:2025-10-23
Published:2025-11-01
Contact:
WANG Jiying, ZHANG Qin
E-mail:gzm230906@126.com;jnwangjiying@163.com;qzhang@sdau.edu.cn
CLC Number:
GAO Zhimiao, NI Haihua, WANG Yanping, ZHAO Xueyan, LI Jingxuan, WANG Jiying, ZHANG Qin. Application of Metabolomics in Genetic Analysis of Important Economic Traits in Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4787-4795.
| 1 |
WEI J , SUN J , PAN Y , et al. Revealing genes related teat number traits via genetic variation in yorkshire pigs based on whole-genome sequencing[J]. BMC Genomics, 2024, 25, 1217.
doi: 10.1186/s12864-024-11109-0 |
| 2 |
MA G , TAN X , YAN Y , et al. A genome-wide association study identified candidate regions and genes for commercial traits in a landrace population[J]. Front Genet, 2025, 15, 1505197.
doi: 10.3389/fgene.2024.1505197 |
| 3 |
ZHAO X , JIA W , WANG J , et al. Identification of a candidate gene regulating intramuscular fat content in pigs through the integrative analysis of transcriptomics and proteomics data[J]. J Agric Food Chem, 2023, 71 (48): 19154- 19164.
doi: 10.1021/acs.jafc.3c05806 |
| 4 |
CORBETT R J , FORD L M , RANEY N E , et al. Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression[J]. Genome, 2023, 66 (4): 68- 79.
doi: 10.1139/gen-2022-0008 |
| 5 |
GOLDANSAZ S A , GUO A C , SAJED T , et al. Livestock metabolomics and the livestock metabolome: A systematic review[J]. PLoS One, 2017, 12 (5): e0177675.
doi: 10.1371/journal.pone.0177675 |
| 6 | 马春芳, 张金宝, 张慧宁, 等. 代谢组学技术及其在动物生产中的应用[J]. 动物医学进展, 2025, 46 (2): 120- 124. |
| MA C F , ZHANG J B , ZHANG H N , et al. Metabolomics technology and its application in animal production[J]. Progress in Veterinary Medicine, 2025, 46 (2): 120- 124. | |
| 7 | 刘瑞, 金龙, 李明洲. 代谢组学在农业动物中的研究与应用[J]. 中国畜牧杂志, 2018, 54 (6): 1- 5. |
| LIU R , JIN L , LI M Z . Research and application of metabolomics in agricultural animals[J]. Chinese Journal of Animal Husbandry, 2018, 54 (6): 1- 5. | |
| 8 |
NICHOLSON J K , WILSON I D . Understanding "global" systems biology: Metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov, 2003, 2 (8): 668- 676.
doi: 10.1038/nrd1157 |
| 9 | AN M , AT F , TS F , et al. Analytical platforms for mass spectrometry-based metabolomics of polar and ionizable metabolites[J]. Adv Exp Med Biol, 2021, 1336, 215- 242. |
| 10 | WILSON I D, WANT E. Untargeted metabolic phenotyping by LC-MS[M]//DEDA O, GIKA H G, WILSON I D. Metabolic Profiling: Vol 2891. New York, NY: Springer US, 2025: 109-129. |
| 11 |
WU S , LIU M , CHEN H , et al. Tryptophan regulates bile and nitrogen metabolism in two pig gut lactobacilli species in vitro based on metabolomics study[J]. Amino Acids, 2022, 54 (10): 1421- 1435.
doi: 10.1007/s00726-022-03179-9 |
| 12 |
CAO M , HAN Q , ZHANG J , et al. An untargeted and pseudotargeted metabolomic combination approach to identify differential markers to distinguish live from dead pork meat by liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2020, 1610, 460553.
doi: 10.1016/j.chroma.2019.460553 |
| 13 | EMWAS A H M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research[M]//BJERRUM J T. Metabonomics: Vol 1277. New York, NY: Springer New York, 2015: 161-193. |
| 14 |
PEREZ DE SOUZA L , ALSEEKH S , SCOSSA F , et al. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research[J]. Nat Methods, 2021, 18 (7): 733- 746.
doi: 10.1038/s41592-021-01116-4 |
| 15 |
CIBOROWSKI M , LIPSKA A , GODZIEN J , et al. Combination of LC-MS- and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood[J]. J Proteome Res, 2012, 11 (12): 6231- 6241.
doi: 10.1021/pr3008946 |
| 16 |
GONZÁLEZ-RIANO C , DUDZIK D , GARCIA A , et al. Recent developments along the analytical process for metabolomics workflows[J]. Anal Chem, 2020, 92 (1): 203- 226.
doi: 10.1021/acs.analchem.9b04553 |
| 17 | ZHANG A , SUN H , WANG P , et al. Modern analytical techniques in metabolomics analysis[J]. Analyst, 2011, 137 (2): 293- 300. |
| 18 |
PICONE G , ZAPPATERRA M , LUISE D , et al. Metabolomics characterization of colostrum in three sow breeds and its influences on piglets' survival and litter growth rates[J]. J Anim Sci Biotechnol, 2018, 9, 23.
doi: 10.1186/s40104-018-0237-1 |
| 19 |
XIE Z , GAN M , DU J , et al. Comparison of growth performance and plasma metabolomics between two sire-breeds of pigs in China[J]. Genes (Basel), 2023, 14 (9): 1706.
doi: 10.3390/genes14091706 |
| 20 |
BOVO S , BOLNER M , SCHIAVO G , et al. High-throughput untargeted metabolomics reveals metabolites and metabolic pathways that differentiate two divergent pig breeds[J]. Animal, 2025, 19 (1): 101393.
doi: 10.1016/j.animal.2024.101393 |
| 21 | CAI S , DUO T , WANG X , et al. A comparative analysis of metabolic profiles of embryonic skeletal muscle from lantang and landrace pigs[J]. Animals (Basel), 2022, 12 (4): 420. |
| 22 |
WANG S , CHEN D , JI X , et al. Multi-omics unveils tryptophan metabolic pathway as a key pathway influencing residual feed intake in duroc swine[J]. Front Vet Sci, 2024, 11, 1403493.
doi: 10.3389/fvets.2024.1403493 |
| 23 |
WANG Z , HE Y , WANG C , et al. Variations in microbial diversity and metabolite profiles of female landrace finishing pigs with distinct feed efficiency[J]. Front Vet Sci, 2021, 8, 702931.
doi: 10.3389/fvets.2021.702931 |
| 24 |
JUIGNÉ C , BECKER E , GONDRET F . Small networks of expressed genes in the whole blood and relationships to profiles in circulating metabolites provide insights in inter-individual variability of feed efficiency in growing pigs[J]. BMC Genomics, 2023, 24, 647.
doi: 10.1186/s12864-023-09751-1 |
| 25 |
WANG X , KADARMIDEEN H N . Metabolite genome-wide association study (mGWAS) and gene-metabolite interaction network analysis reveal potential biomarkers for feed efficiency in pigs[J]. Metabolites, 2020, 10 (5): 201.
doi: 10.3390/metabo10050201 |
| 26 |
SONG B , CHENG Y , AZAD M A K , et al. Muscle characteristics comparison and targeted metabolome analysis reveal differences in carcass traits and meat quality of three pig breeds[J]. Food Funct, 2023, 14 (16): 7603- 7614.
doi: 10.1039/D2FO03709B |
| 27 |
DENG L , LI W , LIU W , et al. Integrative metabolomic and transcriptomic analysis reveals difference in glucose and lipid metabolism in the longissimus muscle of luchuan and duroc pigs[J]. Front Genet, 2023, 14, 1128033.
doi: 10.3389/fgene.2023.1128033 |
| 28 |
DAN H , LIU C , ZHANG H , et al. Integrated transcriptomic and metabolomic analyses reveal heterosis for meat quality of neijiang pigs[J]. Front Vet Sci, 2024, 11, 1493284.
doi: 10.3389/fvets.2024.1493284 |
| 29 | 周浩迪. 血浆代谢组学与猪肉pH及肉色品质的关系研究[D]. 雅安: 四川农业大学, 2022. |
| ZHOU H D. Study on the relationship between plasma metabolomics and pork pH and meat color quality[D]. Yaan: Sichuan Agricultural University, 2022. (in Chinese) | |
| 30 |
WELZENBACH J , NEUHOFF C , LOOFT C , et al. Different statistical approaches to investigate porcine muscle metabolome profiles to highlight new biomarkers for pork quality assessment[J]. PLoS One, 2016, 11 (2): e0149758.
doi: 10.1371/journal.pone.0149758 |
| 31 |
ZHAN H , XIONG Y , WANG Z , et al. Integrative analysis of transcriptomic and metabolomic profiles reveal the complex molecular regulatory network of meat quality in enshi black pigs[J]. Meat Sci, 2022, 183, 108642.
doi: 10.1016/j.meatsci.2021.108642 |
| 32 |
SHEN L , MA J , ZHOU H , et al. Plasma metabolomic profiling reveals preliminary biomarkers of pork quality based on pH value[J]. Foods, 2022, 11 (24): 4005.
doi: 10.3390/foods11244005 |
| 33 |
LIU H , HE J , YUAN Z , et al. Metabolomics analysis provides novel insights into the difference in meat quality between different pig breeds[J]. Foods, 2023, 12 (18): 3476.
doi: 10.3390/foods12183476 |
| 34 |
HUANG Y , ZHOU L , ZHANG J , et al. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds[J]. Meat Sci, 2020, 168, 108182.
doi: 10.1016/j.meatsci.2020.108182 |
| 35 |
HOU X , ZHANG R , YANG M , et al. Metabolomics and lipidomics profiles related to intramuscular fat content and flavor precursors between laiwu and yorkshire pigs[J]. Food Chem, 2023, 404, 134699.
doi: 10.1016/j.foodchem.2022.134699 |
| 36 |
YU T , TIAN X , LI D , et al. Transcriptome, proteome and metabolome analysis provide insights on fat deposition and meat quality in pig[J]. Food Res Int, 2023, 166, 112550.
doi: 10.1016/j.foodres.2023.112550 |
| 37 | ZHANG R , YANG M , HOU X , et al. Characterization and difference of lipids and metabolites from jianhe white xiang and large white pork by high-performance liquid chromatography-tandem mass spectrometry[J]. Food Res Int, 2022, 162 (Pt A): 111946. |
| 38 |
ZHANG Y , DING N , CAO J , et al. Proteomics and metabolic characteristics of boar seminal plasma extracellular vesicles reveal biomarker candidates related to sperm motility[J]. J Proteome Res, 2024, 23 (9): 3764- 3779.
doi: 10.1021/acs.jproteome.4c00060 |
| 39 | ZHANG Y , LIANG H , LIU Y , et al. Metabolomic analysis and identification of sperm freezability-related metabolites in boar seminal plasma[J]. Animals (Basel), 2021, 11 (7): 1939. |
| 40 | CHENG J , HAO X , ZHANG W , et al. Proteomic and metabolomic profiling reveals alterations in boar X and Y sperm[J]. Animals (Basel), 2024, 14 (24): 3672. |
| 41 |
FLETCHER L , AKHTAR N , ZHAN X , et al. Identification of candidate salivary, urinary and serum metabolic biomarkers for high litter size potential in sows (sus scrofa)[J]. Metabolites, 2022, 12 (11): 1045.
doi: 10.3390/metabo12111045 |
| 42 |
PAN B , CHAI J , FEI K , et al. Dynamic changes in the transcriptome and metabolome of pig ovaries across developmental stages and gestation[J]. BMC Genomics, 2024, 25, 1193.
doi: 10.1186/s12864-024-11122-3 |
| 43 |
REN Y , ZHANG Q , HE F , et al. Metabolomics reveals early pregnancy biomarkers in sows: A non-invasive diagnostic approach[J]. Front Vet Sci, 2024, 11, 1396492.
doi: 10.3389/fvets.2024.1396492 |
| 44 |
ZHOU C , CAI G , MENG F , et al. Urinary metabolomics reveals the biological characteristics of early pregnancy in pigs[J]. Porcine Health Manag, 2022, 8 (1): 14.
doi: 10.1186/s40813-022-00256-z |
| 45 |
WANG S , WU P , WANG K , et al. Comparative metabolome profiling of serum and urine from sows with a high prevalence of piglet mummification and normal sows at different stages of pregnancy[J]. Theriogenology, 2022, 183, 10- 25.
doi: 10.1016/j.theriogenology.2022.02.012 |
| 46 |
MO J , SUN L , CHENG J , et al. Non-targeted metabolomics reveals metabolic characteristics of porcine atretic follicles[J]. Front Vet Sci, 2021, 8, 679947.
doi: 10.3389/fvets.2021.679947 |
| 47 |
YANG L , LIU X , HUANG X , et al. Metabolite and proteomic profiling of serum reveals the differences in molecular immunity between min and large white pig breeds[J]. Int J Mol Sci, 2023, 24 (6): 5924.
doi: 10.3390/ijms24065924 |
| 48 |
DERVISHI E , BAI X , CHENG J , et al. Exploration of plasma metabolite levels in healthy nursery pigs in response to environmental enrichment and disease resilience[J]. J Anim Sci, 2023, 101, skad033.
doi: 10.1093/jas/skad033 |
| 49 |
WU Q , HAN Y , WU X , et al. Integrated time-series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV[J]. Front Immunol, 2022, 13, 960709.
doi: 10.3389/fimmu.2022.960709 |
| 50 |
PISCOPO N , COSTANZO M , GELZO M , et al. Effect of the sarcoptic mange upon metabolome profiling in wild boars[J]. Res Vet Sci, 2025, 183, 105505.
doi: 10.1016/j.rvsc.2024.105505 |
| 51 |
MA J , GAN M , CHEN S , et al. Metabolome and transcriptome profiling reveal tRNA-derived small RNAs regulated glutathione metabolism in intrauterine growth-restricted pigs[J]. Int J Biol Macromol, 2025, 293, 139167.
doi: 10.1016/j.ijbiomac.2024.139167 |
| 52 |
WEI B , ZHENG J , CHAI J , et al. Metabolomic and proteomic profiling of a burn-hemorrhagic shock swine model reveals a metabolomic signature associated with fatal outcomes[J]. Eur J Med Res, 2025, 30, 10.
doi: 10.1186/s40001-024-02245-0 |
| 53 |
LIU Y , ZHANG K , ZHENG H , et al. Proteomics analysis of porcine serum proteins by LC-MS/MS after foot-and-mouth disease virus (FMDV) infection[J]. J Vet Med Sci, 2011, 73 (12): 1569- 1572.
doi: 10.1292/jvms.11-0019 |
| 54 | 姚伦. 伪狂犬病毒感染猪肺泡巨噬细胞代谢组学研究及靶向树突状细胞的新型疫苗构建[D]. 武汉: 华中农业大学, 2023. |
| YAO L. Metabolomics study of porcine alveolar macrophages infected with pseudorabies virus and construction of new vaccines targeting dendritic cells[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
| 55 |
NOVOA-DEL-TORO E M , WITTING M . Navigating common pitfalls in metabolite identification and metabolomics bioinformatics[J]. Metabolomics, 2024, 20 (5): 103.
doi: 10.1007/s11306-024-02167-2 |
| 56 |
IZUMI Y , MATSUDA F , HIRAYAMA A , et al. Inter-laboratory comparison of metabolite measurements for metabolomics data integration[J]. Metabolites, 2019, 9 (11): 257.
doi: 10.3390/metabo9110257 |
| 57 |
HAN W , LI L . Evaluating and minimizing batch effects in metabolomics[J]. Mass Spectrom Rev, 2022, 41 (3): 421- 442.
doi: 10.1002/mas.21672 |
| 58 |
LIAO H W , CHENG Y W , TANG S C , et al. Bias caused by incomplete metabolite extraction and matrix effect: Evaluation of critical factors for plasma sample preparation prior to metabolomics[J]. J Pharm Biomed Anal, 2022, 219, 114930.
doi: 10.1016/j.jpba.2022.114930 |
| 59 |
YU T , TIAN X , LI D , et al. Transcriptome, proteome and metabolome analysis provide insights on fat deposition and meat quality in pig[J]. Food Res Int, 2023, 166, 112550.
doi: 10.1016/j.foodres.2023.112550 |
| 60 | GOH H H. Integrative multi-omics through bioinformatics[M]//AIZAT W M, GOH H H, BAHARUM S N. Omics Applications for Systems Biology. Cham: Springer International Publishing, 2018: 69-80. |
| 61 | 叶妱阳, 李玉凤, 彭聪, 等. 基于人工智能与组学技术探索糖尿病合并结核病生物标志物的研究进展[J]. 中国临床保健杂志, 2025, 28 (2): 279- 283. |
| YE Z Y , LI Y F , PENG C , et al. Research progress on biomarkers of diabetes mellitus complicated with tuberculosis based on artificial intelligence and omics technology[J]. Chinese Journal of Clinical Health, 2025, 28 (2): 279- 283. |
| [1] | LIN Xiao, LI Ruijie, LIU Long, GENG Tuoyu, GONG Daoqing. Research Progress on Sex Determining Genes and Their Methylation Regulation in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4129-4142. |
| [2] | TIAN Jiao, LONG Juyan, CHEN Xia, CEN Xiaoli, NIU Xi, HUANG Shihui, WANG Jiafu, RAN Xueqin. Down-regulation of Gene Expression by SINE Insertion in the 3'UTR of the ENTPD1 Gene in the Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4303-4314. |
| [3] | QIN Yang, XIA Siting, HE Liuqin, WANG Tianli, LIU Yuyan, JIANG Xiaohan, LIU Zhihao, LIU Siwei, LI Tiejun, YIN Yulong. Effect of Chronic Oxidative Stress on Trace Elements in Organ Tissues of Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4452-4460. |
| [4] | RU Min, JIANG Xiaofeng, LUO Guosheng, WU Yonghou. Effects of Dietary Bacillus subtilis Supplementation on Growth Performance, Serum Immunity and Antioxidant Function, Intestinal Morphology and Microorganisms of Piglets Challenged with Escherichia coli [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4461-4471. |
| [5] | LIU Can, SU Yixin, JING Xianjin, LI Wenze, YANG Lepu, WANG Ruijun, ZHANG Yanjun, WANG Zhiying, LÜ Qi, SU Rui. Research Progress of Epigenetics in Sheep and Goats Genetic Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3561-3577. |
| [6] | YU Shulong, MAO Nannan, WANG Yunlong, ZHANG Yiran, WANG Yuanyuan, ZHOU Rongyan, ZANG Sumin, XIE Hui. Research Progress on Pigeon Sex Identification [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3601-3609. |
| [7] | CHI Shunshun, WU Dan, WANG Nan, WANG Wanjie, NIE Yuxin, MU Yulian, LIU Zhiguo, ZHU Zhendong, LI Kui. Establishment and Application of A Detection Method for MSTN Gene-Edited Pigs Based on RPA-CRISPR/Cas12a [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3734-3748. |
| [8] | LIU Sha, YANG Caichun, ZHANG Xiaoyu, CHEN Qiong, LIU Xiong, CHEN Hongbo, ZHOU Huanhuan, SHI Liangyu. Population Genetic Structure and Genome-wide Runs of Homozygosity Analysis in Meihuaxing Pigs Based on 80K SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3749-3760. |
| [9] | CAO Ning, ZHANG Hu, WANG Junli, SA Renna, ZHAO Feng, XIE Jingjing, GAO Lixiang, ZHAO Jiangtao, DONG Ying, WANG Yuming. Effect of Drying Method on Determination of Amino Acid Digestibility of Pig Feed by Biomimetic Method [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3893-3907. |
| [10] | MENG Yaxuan, LIU Yan, WANG Jing, CHEN Guoshun, FENG Tao. Effects of Glucosamine on Serum Anti-oxidation, Inflammatory Indexes and Intestinal Microbes in Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3908-3921. |
| [11] | ZHENG Hao, LUO Fang, SONG Chenglei, TAO Jinzhong. Screening Potential Plasma Biomarkers of Non-pregnant Dairy Cows after Artificial Insemination Based on Metabolomics Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3252-3264. |
| [12] | WANG Nan, WANG Chengming, WANG Jing, LIN Xingtong, HE Lingyun. Effects of Phosphatidylethanolamine on Colonic Mucosal Barrier Function and Gut Microbiota in Postnatal Growth Retardation Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3305-3315. |
| [13] | SHU Jingchao, ZHANG Han, PENG Zhifeng, QIAO Hongxing. Isolation, Identification and Virulence Gene Analysis of Porcine Pathogenic Lactococcus garvieae [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3399-3407. |
| [14] | ZHAO Shunran, FU Guixin, PANG Zhaoqi, XIA Wei, LI Junjie, TAO Chenyu. Research Progress on the Mechanism of Porcine Granulosa Cells in Follicular Atresia [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2537-2545. |
| [15] | WU Tong, WANG Nan, XING Yuxin, ZHANG Ben, HU Panyang, ZHANG Haitao, ZHU Yufeng, WU Xiangzhe, YANG Feng, LI Xiuling, WANG Kejun, HAN Xuelei, LI Xinjian, YU Tong, BAI Jun, LI Gaiying, QIAO Ruimin. Association Analysis of Backfat Thickness and Genome-Wide Copy Number Variations in Yunan Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2639-2648. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||