Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (6): 2537-2545.doi: 10.11843/j.issn.0366-6964.2025.06.002
• Review • Previous Articles Next Articles
ZHAO Shunran(), FU Guixin, PANG Zhaoqi, XIA Wei, LI Junjie, TAO Chenyu*(
)
Received:
2024-12-05
Online:
2025-06-23
Published:
2025-06-25
Contact:
TAO Chenyu
E-mail:1814655051@qq.com;taochenyuty@163.com
CLC Number:
ZHAO Shunran, FU Guixin, PANG Zhaoqi, XIA Wei, LI Junjie, TAO Chenyu. Research Progress on the Mechanism of Porcine Granulosa Cells in Follicular Atresia[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2537-2545.
Table 1
Genes/proteins/non-coding RNA that regulate granulosa cells-induced atresia follicles"
基因/蛋白/非编码RNA Gene/protein/noncoding RNA | 作用机制 Mechanism of action | 类型 Type | 参考文献 references |
BIMEL | 氧化应激激活JNK上调p-BimEL-T112水平促进GC细胞凋亡 | 凋亡 | Yang等[ |
VEGFA | miR-361-5p抑制VEGFA基因3′UTR促进GC细胞凋亡 | 凋亡 | Ma等[ |
miR-23a | miR-23a受到MEIS1的调节,控制FOXO1的表达促进细胞凋亡 | 凋亡 | Wang等[ |
miR-146b | miR-146b抑制CYP19A1表达 | 激素 | Li等[ |
miR-365-3p | miR-365-3p促进GC凋亡并可以调控CYP11A1表达 | 凋亡、激素 | Wang等[ |
circSLC41A1 | circSLC41A1与miR-9820-5p结合下调SRSF1表达,促进GC凋亡 | 凋亡 | Guo等[ |
circINHA-001 | circINHA-001与miR-214-5p、miR-7144-3p miR-9830-5p结合下调INHBA表达,增加抑制素表达,促进GC凋亡 | 凋亡 | Ma等[ |
lncRNA-NORSF | lncRNA-NORSF通过调控miR-339降低CYP19A1表达,并与miR-126相互作用,抑制TGFBR2表达,促进GC凋亡 | 凋亡、激素 | Wang等[ |
ULK1 | ULK1的m6A修饰降低而增加其表达,促进自噬发生 | 自噬 | Li等[ |
tRF-1:30-Gly-GCC-2 | tRF-1:30-Gly-GCC-2通过抑制MAPK1信号通路抑制颗粒细胞增殖并促进铁死亡 | 铁死亡 | Pan等[ |
ZBP1、RIPK3和RIPK1 | ZBP1、RIPK3和RIPK1组成的PANoptosome复合物导致闭锁卵泡GC的坏死性凋亡与焦亡是 | 坏死性凋亡、焦亡 | Wu等[ |
1 |
郭亚军, 柳苗苗, 付德海, 等. 藏绵羊卵巢组织学及卵泡超微形态的观察[J]. 畜牧兽医学报, 2021, 52 (2): 389- 398.
doi: 10.11843/j.issn.0366-6964.2021.02.011 |
GUO Y J , LIU M M , FU D H , et al. Observation of ovary histology and ultrastructure of follicles in Tibetan sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (2): 389- 398.
doi: 10.11843/j.issn.0366-6964.2021.02.011 |
|
2 | MARCOZZI S , ROSSI V , SALUSTRI A , et al. Programmed cell death in the human ovary[J]. Minerva Ginecol, 2018, 70 (5): 549- 560. |
3 |
梁学超, 蒋明, 罗玉茹, 等. 猪卵巢发育的组织学变化及卵泡闭锁规律研究[J]. 畜牧兽医学报, 2017, 48 (10): 1863- 1870.
doi: 10.11843/j.issn.0366-6964.2017.10.009 |
LIANG X C , JIANG M , LUO Y R , et al. Study on histology and patterns of follicular atresia during ovarian development in pig[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (10): 1863- 1870.
doi: 10.11843/j.issn.0366-6964.2017.10.009 |
|
4 |
DONG M , OUYANG Y , GAO S , et al. Protein phosphatase 4 maintains the survival of primordial follicles by regulating autophagy in oocytes[J]. Cell Death Dis, 2024, 15 (9): 658.
doi: 10.1038/s41419-024-07051-4 |
5 |
ZHANG X , TAO Q , SHANG J , et al. miR-26a promotes apoptosis of porcine granulosa cells by targeting the 3beta-hydroxysteroid-Delta24-reductase gene[J]. Asian-Australas J Anim Sci, 2020, 33 (4): 547- 555.
doi: 10.5713/ajas.19.0173 |
6 |
YANG F , CHEN Y , LIU Q , et al. Dynamics and regulations of BimEL Ser65 and Thr112 phosphorylation in porcine granulosa cells during follicular atresia[J]. Cells, 2020, 9 (2): 402.
doi: 10.3390/cells9020402 |
7 |
LIU J , NING C , ZHANG J , et al. Comparative miRNA expression profile analysis of porcine ovarian follicles: new insights into the initiation mechanism of follicular atresia[J]. Front Genet, 2023, 14, 1338411.
doi: 10.3389/fgene.2023.1338411 |
8 |
LI Z , RUAN Z , FENG Y , et al. METTL3-mediated m6A methylation regulates granulosa cells autophagy during follicular atresia in pig ovaries[J]. Theriogenology, 2023, 201, 83- 94.
doi: 10.1016/j.theriogenology.2023.02.021 |
9 |
PAN Y , GAN M , WU S , et al. tRF-Gly-GCC in atretic follicles promotes ferroptosis in granulosa cells by down-regulating MAPK1[J]. Int J Mol Sci, 2024, 25 (16): 9061.
doi: 10.3390/ijms25169061 |
10 |
GAO X , ZHANG J , PAN Z , et al. The distribution and expression of vascular endothelial growth factor A (VEGFA) during follicular development and atresia in the pig[J]. Reprod Fertil Dev, 2020, 32 (3): 259- 266.
doi: 10.1071/RD18508 |
11 |
GRZESIAK M , SOCHA M , HRABIA A . Altered vitamin D metabolic system in follicular cysts of sows[J]. Reprod Domest Anim, 2021, 56 (1): 193- 196.
doi: 10.1111/rda.13867 |
12 |
CAO R , WU W J , ZHOU X L , et al. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia[J]. Mol Cells, 2015, 38 (4): 304- 311.
doi: 10.14348/molcells.2015.2122 |
13 | 程颖, 魏全伟, 王喆, 等. 母猪健康和闭锁卵巢有腔卵泡的转录组测序比较分析[J]. 南京农业大学学报, 2023, 46 (3): 555- 563. |
CHENG Y , WEI Q W , WANG Z , et al. Transcriptome sequencing analysis of porcine granulosa cells in healthy and atretic follicles[J]. Journal of Nanjing Agricultural University, 2023, 46 (3): 555- 563. | |
14 |
ZHANG J , QIN X , WANG C , et al. Comparative transcriptome profile analysis of granulosa cells from porcine ovarian follicles during early atresia[J]. Anim Biotechnol, 2024, 35 (1): 2282090.
doi: 10.1080/10495398.2023.2282090 |
15 |
MO J , SUN L , CHENG J , et al. Non-targeted metabolomics reveals metabolic characteristics of porcine atretic follicles[J]. Front Vet Sci, 2021, 8, 679947.
doi: 10.3389/fvets.2021.679947 |
16 |
ELMORE S . Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35 (4): 495- 516.
doi: 10.1080/01926230701320337 |
17 |
FUCHS Y , STELLER H . Live to die another way: modes of programmed cell death and the signals emanating from dying cells[J]. Nat Rev Mol Cell Biol, 2015, 16 (6): 329- 344.
doi: 10.1038/nrm3999 |
18 | HAGAN M L , MANDER S , JOSEPH C , et al. Upregulation of the EGFR/MEK1/MAPK1/2 signaling axis as a mechanism of resistance to antiestrogen-induced BimEL dependent apoptosis in ER+ breast cancer cells[J]. Int J Oncol, 2023, 62 (2): 20. |
19 |
WANG Y , ZENG S . Melatonin promotes ubiquitination of phosphorylated pro-apoptotic protein Bcl-2-interacting mediator of cell death-extra long (Bim(EL)) in porcine granulosa cells[J]. Int J Mol Sci, 2018, 19 (11): 3431.
doi: 10.3390/ijms19113431 |
20 |
REITER R J , MAYO J C , TAN D , et al. Melatonin as an antioxidant: under promises but over delivers[J]. J Pineal Res, 2016, 61 (3): 253- 278.
doi: 10.1111/jpi.12360 |
21 |
ZHUO Y , CAO M , GONG Y , et al. Gut microbial metabolism of dietary fibre protects against high energy feeding induced ovarian follicular atresia in a pig model[J]. Bri J Nutr, 2021, 125 (1): 38- 49.
doi: 10.1017/S0007114520002378 |
22 | MELINCOVICI C S , BOSCA A B , SUSMAN S , et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59 (2): 455- 467. |
23 |
DAI W , YANG H , XU B , et al. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model[J]. J Ovarian Res, 2023, 16 (1): 198.
doi: 10.1186/s13048-023-01278-z |
24 |
ZHAO Y , WANG J , QIN W , et al. Dehydroepiandrosterone promotes ovarian angiogenesis and improves ovarian function in a rat model of premature ovarian insufficiency by up-regulating HIF-1alpha/VEGF signalling[J]. Reprod Biomed Online, 2024, 49 (3): 103914.
doi: 10.1016/j.rbmo.2024.103914 |
25 |
SHIMIZU T , JIANG J , SASADA H , et al. Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts[J]. Biol Reprod, 2002, 67 (6): 1846- 1852.
doi: 10.1095/biolreprod.102.006734 |
26 |
MA M , ZHANG J , GAO X , et al. miR-361-5p mediates SMAD4 to promote porcine granulosa cell apoptosis through VEGFA[J]. Biomolecules, 2020, 10 (9): 1281.
doi: 10.3390/biom10091281 |
27 | MATTICK J S , MAKUNIN I V . Non-coding RNA[J]. Hum Mol Genet, 2006, 15 Spec No 1, R17- R29. |
28 |
DAI L , TSAI-MORRIS C , SATO H , et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development[J]. J Biol Chem, 2011, 286 (52): 44306- 44318.
doi: 10.1074/jbc.M111.282756 |
29 |
WANG S , WANG Y , CHEN Y , et al. MEIS1 is a common transcription repressor of the miR-23a and NORHA axis in granulosa cells[J]. Int J Mol Sci, 2023, 24 (4): 3589.
doi: 10.3390/ijms24043589 |
30 |
LIU S , CHEN J , LIU M , et al. miR-107 suppresses porcine granulosa cell proliferation and estradiol synthesis while promoting apoptosis via targeting PTGS2[J]. Theriogenology, 2025, 238, 117367.
doi: 10.1016/j.theriogenology.2025.117367 |
31 |
NEUNZIG J , BERNHARDT R . Effect of sulfonated steroids on steroidogenic cytochrome P450-dependent steroid hydroxylases[J]. J Steroid Biochem Mol Biol, 2018, 179, 3- 7.
doi: 10.1016/j.jsbmb.2017.07.004 |
32 |
WANG M , RAMIREZ J , HAN J , et al. The steroidogenic enzyme Cyp11a1 is essential for development of peanut-induced intestinal anaphylaxis[J]. J Allergy Clin Immunol, 2013, 132 (5): 1174- 1183.
doi: 10.1016/j.jaci.2013.05.027 |
33 |
TIAN J , QIN P , XU T , et al. Chaigui granule exerts anti-depressant effects by regulating the synthesis of Estradiol and the downstream of CYP19A1-E2-ERKs signaling pathway in CUMS-induced depressed rats[J]. Front Pharmacol, 2022, 13, 1005438.
doi: 10.3389/fphar.2022.1005438 |
34 |
LI Q , DU X , LIU L , et al. Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1[J]. Domest Anim Endocrinol, 2021, 74, 106509.
doi: 10.1016/j.domaniend.2020.106509 |
35 |
WANG M , WANG Y , YAO W , et al. lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells[J]. J Cell Physiol, 2022, 237 (11): 4238- 4250.
doi: 10.1002/jcp.30872 |
36 |
LI X , YANG L , CHEN L . The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71 (3): 428- 442.
doi: 10.1016/j.molcel.2018.06.034 |
37 |
FU Y , JIANG H , LIU J , et al. Genome-wide analysis of circular RNAs in bovine cumulus cells treated with BMP15 and GDF9[J]. Sci Rep, 2018, 8 (1): 7944.
doi: 10.1038/s41598-018-26157-2 |
38 |
MENG L , TEERDS K , TAO J , et al. Characteristics of circular RNA expression profiles of porcine granulosa cells in healthy and atretic antral follicles[J]. Int J Mol Sci, 2020, 21 (15): 5217.
doi: 10.3390/ijms21155217 |
39 |
GUO T Y , HUANG L , YAO W , et al. The potential biological functions of circular RNAs during the initiation of atresia in pig follicles[J]. Domest Anim Endocrinol, 2020, 72, 106401.
doi: 10.1016/j.domaniend.2019.106401 |
40 |
WANG H , ZHANG Y , ZHANG J , et al. circSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820-5p sponging[J]. Int J Mol Sci, 2022, 23 (3): 1509.
doi: 10.3390/ijms23031509 |
41 |
MA M , WANG H , ZHANG Y , et al. circRNA-mediated inhibin-activin balance regulation in ovarian granulosa cell apoptosis and follicular atresia[J]. Int J Mol Sci, 2021, 22 (17): 9113.
doi: 10.3390/ijms22179113 |
42 | 王彩霞, 秦鑫鑫, 李文洁, 等. 猪卵巢颗粒细胞中circINHBA的鉴定及与细胞凋亡的相关性分析[J]. 畜牧与兽医, 2024, 56 (10): 14- 20. |
WANG C X , QIN X X , LI W J , et al. Identification of circINHBA and its effect on follicular granulosa cell apoptosis in pigs[J]. Animal Husbandry and Veterinary Medicine, 2024, 56 (10): 14- 20. | |
43 |
KOPP F , MENDELL J T . Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172 (3): 393- 407.
doi: 10.1016/j.cell.2018.01.011 |
44 |
MENG L , ZHAO K , WANG C C , et al. Characterization of long non-coding RNA profiles in porcine granulosa cells of healthy and atretic antral follicles: Implications for a potential role in apoptosis[J]. Int J Mol Sci, 2021, 22 (5): 2677.
doi: 10.3390/ijms22052677 |
45 |
WANG M , WANG Y , YANG L , et al. Nuclear lncRNA NORSF reduces E2 release in granulosa cells by sponging the endogenous small activating RNA miR-339[J]. BMC Biol, 2023, 21 (1): 221.
doi: 10.1186/s12915-023-01731-x |
46 |
WANG M , SHENG W , ZHANG J , et al. A mutation losing an RBP-binding site in the lncRNA NORSF transcript influences granulosa cell apoptosis and sow fertility[J]. Adv Sci (Weinh), 2024, 11 (40): e2404747.
doi: 10.1002/advs.202404747 |
47 |
DU X , LIU L , LI Q , et al. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death[J]. Commun Biol, 2020, 3 (1): 131.
doi: 10.1038/s42003-020-0864-x |
48 |
DU X , LI Q , YANG L , et al. Transcriptomic data analyses reveal that sow fertility-related lincRNA NORFA is essential for the normal states and functions of granulosa cells[J]. Front Cell Dev Biol, 2021, 9, 610553.
doi: 10.3389/fcell.2021.610553 |
49 |
GUO Z , ZENG Q , LI Q , et al. LncRNA NORFA promotes the synthesis of estradiol and inhibits the apoptosis of sow ovarian granulosa cells through SF-1/CYP11A1 axis[J]. Biol Direct, 2024, 19 (1): 107.
doi: 10.1186/s13062-024-00563-1 |
50 |
LOOS B , ENGELBRECHT A , LOCKSHIN R A , et al. The variability of autophagy and cell death susceptibility: Unanswered questions[J]. Autophagy, 2013, 9 (9): 1270- 1285.
doi: 10.4161/auto.25560 |
51 | MENG L , JAN S Z , HAMER G , et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis[J]. Biol Reprod, 2018, 99 (4): 853- 863. |
52 | ZHENG Y , MA L , LIU N , et al. Autophagy and apoptosis of porcine ovarian granulosa cells during follicular development[J]. Animals (Basel), 2019, 9 (12): 1111. |
53 |
GIOIA L , FESTUCCIA C , COLAPIETRO A , et al. Abundances of autophagy-related protein LC3B in granulosa cells, cumulus cells, and oocytes during atresia of pig antral follicles[J]. Anim Reprod Sci, 2019, 211, 106225.
doi: 10.1016/j.anireprosci.2019.106225 |
54 |
CAO M , CHEN X , WANG Y , et al. The reduction of the m6A methyltransferase METTL3 in granulosa cells is related to the follicular cysts in pigs[J]. J Cell Physiol, 2024, 239 (6): e31289.
doi: 10.1002/jcp.31289 |
55 |
LIU G , WANG Y , ZHENG Y , et al. PHB2 binds to ERbeta to induce the autophagy of porcine ovarian granulosa cells through mTOR phosphorylation[J]. Theriogenology, 2023, 198, 114- 122.
doi: 10.1016/j.theriogenology.2022.12.031 |
56 |
ZHANG X , LI M , HUANG M , et al. Effect of RFRP-3, the mammalian ortholog of GnIH, on apoptosis and autophagy in porcine ovarian granulosa cells via the p38MAPK pathway[J]. Theriogenology, 2022, 180, 137- 145.
doi: 10.1016/j.theriogenology.2021.12.024 |
57 |
WANG S , YAO Q , ZHAO F , et al. 1α, 25(OH)2 D3 promotes the autophagy of porcine ovarian granulosa cells as a protective mechanism against ROS through the BNIP3/PINK1 pathway[J]. Int J Mol Sci, 2023, 24 (5): 4364.
doi: 10.3390/ijms24054364 |
58 |
XING W , WANG B , LI M , et al. The dual role of ATG7: Regulation of autophagy and apoptosis in porcine ovarian follicular granulosa cells[J]. Anim Reprod Sci, 2024, 270, 107601.
doi: 10.1016/j.anireprosci.2024.107601 |
59 |
GAO W , WANG X , ZHOU Y , et al. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy[J]. Signal Transduct Target Ther, 2022, 7 (1): 196.
doi: 10.1038/s41392-022-01046-3 |
60 |
WU X , LI Y , ZHANG S , et al. Ferroptosis as a novel therapeutic target for cardiovascular disease[J]. Theranostics, 2021, 11 (7): 3052- 3059.
doi: 10.7150/thno.54113 |
61 |
WANG D , WAN X . Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy[J]. Int Immunopharmacol, 2023, 118, 110143.
doi: 10.1016/j.intimp.2023.110143 |
62 |
WU H , HAN Y , LIU J , et al. The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia[J]. J Anim Sci Biotechnol, 2024, 15 (1): 147.
doi: 10.1186/s40104-024-01107-3 |
63 |
MENG L , WU Z , ZHAO K , et al. Transcriptome analysis of porcine granulosa cells in healthy and atretic follicles: Role of steroidogenesis and oxidative stress[J]. Antioxidants (Basel), 2020, 10 (1): 22.
doi: 10.3390/antiox10010022 |
64 |
LIU S , JIA Y , MENG S , et al. Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells: A review[J]. Int J Mol Sci, 2023, 24 (11): 9205.
doi: 10.3390/ijms24119205 |
65 |
KONG C , SU J , WANG Q , et al. Signaling pathways of Periplaneta americana peptide resist H2O2-induced apoptosis in pig-ovary granulosa cells through FoxO1[J]. Theriogenology, 2022, 183, 108- 119.
doi: 10.1016/j.theriogenology.2022.02.004 |
66 | ZHANG J , REN Q , CHEN J , et al. Autophagy contributes to oxidative stress-induced apoptosis in porcine granulosa cells[J]. Reprod Sci, 2021, 28 (8): 2147- 2160. |
67 | SHEN L , LIU J , LUO A , et al. The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities[J]. J Ovarian Res, 2023, 16 (1): 237. |
68 | LI C , ZHOU J , LIU Z , et al. FSH prevents porcine granulosa cells from hypoxia-induced apoptosis via activating mitophagy through the HIF-1alpha-PINK1-Parkin pathway[J]. FASEB J, 2020, 34 (3): 3631- 3645. |
69 | ZHANG X , CHEN Y , LI H , et al. Sulforaphane acts through NFE2L2 to prevent hypoxia-induced apoptosis in porcine granulosa cells via activating antioxidant defenses and mitophagy[J]. J Agric Food Chem, 2022, 70 (26): 8097- 8110. |
70 | LIU Z , LI C , WU G , et al. Involvement of JNK/FOXO1 pathway in apoptosis induced by severe hypoxia in porcine granulosa cells[J]. Theriogenology, 2020, 154, 120- 127. |
71 | TAO J , ZHANG X , ZHOU J , et al. Melatonin alleviates hypoxia-induced apoptosis of granulosa cells by reducing ROS and activating MTNR1B-PKA-Caspase8/9 pathway[J]. Antioxidants (Basel), 2021, 10 (2): 184. |
[1] | WU Tong, WANG Nan, XING Yuxin, ZHANG Ben, HU Panyang, ZHANG Haitao, ZHU Yufeng, WU Xiangzhe, YANG Feng, LI Xiuling, WANG Kejun, HAN Xuelei, LI Xinjian, YU Tong, BAI Jun, LI Gaiying, QIAO Ruimin. Association Analysis of Backfat Thickness and Genome-Wide Copy Number Variations in Yunan Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2639-2648. |
[2] | LIU Siqi, YANG Zhen, YANG Yanan, CAI Yuan, ZHAO Shengguo. The Effect of Interfering with AdiopR2 on the Thermogenesis of Subcutaneous Inguinal Adipocytes in Tibetan Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2649-2660. |
[3] | WU Jianliang, SU Yang, MAO Ruihan, ZHOU Lei, YAN Tiantian, LI Zhi, LIU Jianfeng. Design and Effect Evaluation of A Whole-Genome Low-Density SNP Chip in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2733-2740. |
[4] | ZHU Aiwen, WANG Jian, ZHU Gehui, LIU Haixia, PINGCUO Bandan, WANG Jun, DEQING Zhuoga, YAN Wei, HAN Dayong. Zearalenone Induced Proliferation, Apoptosis, Oxidative Stress and NAC Protective Mechanism of Sertoli Cells in Pengbo Semi-fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2752-2764. |
[5] | CHEN Yun, CHEN Liyuan, SONG Wenjing, ZHANG Xinke, XU Han, WU Jiayi, ZHAO Cuiyan, ZHANG Shouquan. Research Progress on the Mechanism of T-2 Toxin 's Impact on Male Animal Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2038-2046. |
[6] | GAO Zhengjie, LUO Ping, LI Bocheng, WANG Shuilian. Effects of GnIH on Proliferation, Apoptosis and Estrogen Secretion of Mouse Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2230-2242. |
[7] | SHI Jinchuan, SUN Miao, MENG Linghao, WANG Yongqiang, GENG Chao, QI Chaolumeng, CHEN Hengli, WANG Zi, LIU Kai. Detection of Antibiotic Resistance in Escherichia coli Strains Sourced from Racing Pigeons and Whole-genome Sequencing Analysis of Multidrug-resistant Strains [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2372-2382. |
[8] | DONG Zhifang, ZHANG Li, ZHU Xiangbo. Repair Effects of Glutathione on Cadmium Induced Oxidative Damage in Pig Kidney PK-15 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2403-2412. |
[9] | GUO Yanyan, ZHANG Yuxin, LU Rui, LI Yupeng, CHEN Longbin, ZHANG Jinlong, YAO Dawei, RUAN Weibin, ZHANG Xiaosheng, GUO Xiaofei. Research Progress on the Proliferation and Differentiation of Granulosa Cells at Various Follicular Development Stages in Mammal [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1484-1493. |
[10] | WANG Ying, ZHANG Jiaojiao, WANG Xianzhong, QUAN Fusheng. Advances in Autophagy of Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1508-1517. |
[11] | YAO Boyuan, YANG Zhiwen, SUN Yapeng, YANG Yanan, ZHANG Yaru, WANG Xinrong. Analysis of Novel Transcripts, Alternative Splicing, and SNP in Porcine Heart Tissue Based on RNA-Seq Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1664-1675. |
[12] | MENG Xiangxu, LI Jia, REN Deming, CHEN Kuirong, HE Yiyun, WANG Lixian, SHENG Xihui, WANG Ligang. Study on Serum Metabolomics of High and Low Resilience Group of Min Pigs with Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1689-1699. |
[13] | LI Xiaowei, TIAN Wei, LIU Yuan, LI Huixia. Study on the Difference of m6A Methylation Modification in Ovarian Granulosa Cells of Hu Sheep under Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1712-1721. |
[14] | YE Rungen, LIU Yuanbo, LU Lili, Collins Amponsah Asiamah, SU Ying*. Expression of miR-215-5p in Leizhou Black Duck Tissues and Its Effect on Follicular Granulosa Cells Proliferation and Apoptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1722-1730. |
[15] | LI Suchen, LU Tingting, CHEN Junguang, MIAO Hui, MAO Haiguang, HAN Xinyan. Changes of Rectum Microbiota and Virome before and after Weaning and Their Interactions of Chalu Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1791-1801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||