Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (7): 3305-3315.doi: 10.11843/j.issn.0366-6964.2025.07.023
• Animal Nutrition and Feeds • Previous Articles Next Articles
WANG Nan1,2(), WANG Chengming2, WANG Jing2, LIN Xingtong2, HE Lingyun1,*(
)
Received:
2024-08-12
Online:
2025-07-23
Published:
2025-07-25
Contact:
HE Lingyun
E-mail:wangnan0317@stu.hunau.edu.cn;15116380334@163.com
CLC Number:
WANG Nan, WANG Chengming, WANG Jing, LIN Xingtong, HE Lingyun. Effects of Phosphatidylethanolamine on Colonic Mucosal Barrier Function and Gut Microbiota in Postnatal Growth Retardation Piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3305-3315.
Table 1
Primer sequence for PCR"
基因 Gene | 基因号 GenBank No. | 序列(5′→3′) Sequence (5′→3′) |
β-actin | XM_0031242803 | F: CTGCGGCATCCACGAAACT R: AGGGCCGTGATCTCCTTCTG |
ZO-1 | XM_021098896.1 | F: CCTGAGTTTGATAGTGGCGTTGA R: AAATAGATTTCCTGCTCAATTCC |
MUC2 | XM_021082584.1 | F: CTGTGTGGGGCCTGACAA R: AGTGCTTGCAGTCGAACTCA |
spdef | XM_005665895.3 | F: GGCAGGGTTATGTGGGGAGTA R: GCTGTGTGAGGGGTGAGATAAT |
Fig. 1
Morphological and structural damage of colonic mucosal barrier of piglets in each group A. Representative images of colon histology in piglets (magnification 100×, scale=200 μm); B. Colon histopathological; C. The mRNA expression of ZO-1 in the colonic mucosa. #indicates significant difference between NBW and PGR groups (P < 0.05), ##indicates extremely significant difference between NBW and PGR groups (P < 0.01). TCON vs PE: P < 0.05 indicates significant difference between CON and PE groups, TCON vs PE: P < 0.01 indicates extremely significant difference between CON and PE groups"
Fig. 2
Effects of PE on goblet cells differentiation and MUC2 secretion in the colon of piglets A. Representative images of Periodic Acid-Schiff (PAS) staining of the colon of piglets (magnification 100×, scale=200 μm); B. Goblet cell count of colon; C. The mRNA expression of MUC2 and spdef in colonic mucosa. # indicates significant difference between NBW and PGR groups (P < 0.05), ## indicates extremely significant difference between NBW and PGR groups (P < 0.01). TCON vs. PE: P < 0.05 indicates significant difference between CON and PE groups, TCON vs. PE: P < 0.01 indicates extremely significant difference between CON and PE groups. S×T: P < 0.05 indicates an interaction between piglet status and diet. *indicates that the simple main effect analysis between 2 treatments across 2 piglet statuses is different (P < 0.05), **indicates that the simple main effect difference between 2 treatments across 2 piglet statuses is extremely significant (P < 0.01)"
Table 2
The main bacteria at the phylum level in the colon of piglets %"
项目 Item | 处理 Treatments | 仔猪状态 Piglet status | 标准误 SEM | P值 P-value | |||||
CON | PE | NBW | PGR | 处理 Treatments | 状态 Status | 处理×状态 Treatment×Status | |||
Firmicutes | 62.11 | 64.50 | 65.59 | 61.02 | 1.22 | 0.336 | 0.073 | 0.034 | |
Bacteroidetes | 29.75 | 28.01 | 27.09 | 30.67 | 0.99 | 0.390 | 0.084 | 0.761 | |
F/B | 2.20 | 2.44 | 2.62 | 2.01 | 0.13 | 0.345 | 0.024 | 0.766 | |
Actinobacteria | 3.06 | 4.21 | 4.63 | 2.64 | 0.43 | 0.199 | 0.031 | 0.662 | |
Protebacteria | 3.15 | 0.95 | 0.97 | 3.13 | 0.47 | 0.029 | 0.032 | 0.031 | |
Spirochaetes | 0.25 | 0.25 | 0.33 | 0.17 | 0.05 | 0.987 | 0.114 | 0.073 | |
Chlamydise | 0.11 | 0.22 | 0.16 | 0.18 | 0.09 | 0.143 | 0.796 | 0.499 | |
Fusobacteria | 0.12 | 0.01 | 0.02 | 0.12 | 0.04 | 0.190 | 0.235 | 0.263 | |
Verrucomicrobia | 0.08 | 0.05 | 0.04 | 0.08 | 0.01 | 0.140 | 0.084 | 0.289 |
Table 3
The different bacteria at the genus level in the colon of piglets %"
项目 Item | 处理 Treatments | 仔猪状态 Piglet status | 标准误 SEM | P值 P-value | |||||
CON | PE | NBW | PGR | 处理 Treatments | 状态 Status | 处理×状态 Treatment×Status | |||
Megasphaera | 0.27 | 0.89 | 0.91 | 0.25 | 0.16 | 0.056 | 0.043 | 0.084 | |
Gemmiger | 0.90 | 1.26 | 1.39 | 0.77 | 0.14 | 0.213 | 0.039 | 0.341 | |
Coprococcus | 0.07 | 0.19 | 0.15 | 0.11 | 0.02 | 0.006 | 0.259 | 0.458 |
1 | QI M , TAN B , WANG J , et al. The microbiota-gut-brain axis: a novel nutritional therapeutic target for growth retardation[J]. Crit Rev Food Sci Nutr, 2021, 62 (18): 4867- 4892. |
2 | NOWLAND T , PLUSH K , BARTON M , et al. Development and function of the intestinal microbiome and potential implications for pig production[J]. Animals, 2019, 9 (3): 76. |
3 | WANG C , WANG N , DENG Y , et al. β-hydroxybutyrate administration improves liver injury and metabolic abnormality in postnatal growth retardation piglets[J]. Front Vet Sci, 2023, 10, 1294095. |
4 | WU G , BAZER F W , WALLACE J M , et al. Board-invited review: intrauterine growth retardation: implications for the animal sciences[J]. J Anim Sci, 2006, 84 (9): 2316- 37. |
5 | KNAUER M T , HOSTETLER C E . US swine industry productivity analysis, 2005 to 2010[J]. J Swine Health Prod, 2013, 21 (5): 248- 252. |
6 | QI M , TAN B , WANG J , et al. Postnatal growth retardation is associated with deteriorated intestinal mucosal barrier function using a porcine model[J]. J Cell Physiol, 2021, 236 (4): 2631- 2648. |
7 | VANCE J E . Phospholipid synthesis and transport in mammalian cells[J]. Traffic, 2015, 16 (1): 1- 18. |
8 | BECKER T , HORVATH S E , BÖTTINGER L , et al. Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins[J]. J Biol Chem, 2013, 288 (23): 16451- 16459. |
9 | WANG N , WANG C , QI M , et al. Phosphatidylethanolamine improves postnatal growth retardation by regulating mucus secretion of intestinal goblet cells in piglets[J]. Animals, 2024, 14 (8): 1193. |
10 | WU X , VALLANCE B A , BOYER L , et al. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294 (1): G295- G306. |
11 | QI M , LIAO S , WANG J , et al. MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (1): 677- 695. |
12 | XIA B , ZHONG R , WU W , et al. Mucin O-glycan-microbiota axis orchestrates gut homeostasis in a diarrheal pig model[J]. Microbiome, 2022, 10 (1): 139. |
13 | MCGUCKIN M A , LINDÉN S K , SUTTON P , et al. Mucin dynamics and enteric pathogens[J]. Nat Rev Microbiol, 2011, 9 (4): 265- 278. |
14 | VAN DER SLUIS M , DE KONING B A E , DE BRUIJN A C J M , et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection[J]. Gastroenterology, 2006, 131 (1): 117- 129. |
15 | WANG T , CHEN B , LUO M , et al. Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring[J]. Microbiome, 2023, 11 (1): 245. |
16 | DUARTE M E , KIM S W . Intestinal microbiota and its interaction to intestinal health in nursery pigs[J]. Anim Nutr, 2022, 8, 169- 184. |
17 | SIOBHAN F C , EILEEN F M , ORLA O , et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63 (12): 1913- 1920. |
18 | LOU M , CAO A , JIN C , et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder[J]. Gut, 2022, 71 (8): 1588- 1599. |
19 | RINNINELLA E , RAOUL P , CINTONI M , et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7 (1): 14. |
20 | GIBⅡNO G , LOPETUSO L R , SCALDAFERRI F , et al. Exploring Bacteroidetes: metabolic key points and immunological tricks of our gut commensals[J]. Dig Liver Dis, 2018, 50 (7): 635- 639. |
21 | STOJANOV S , BERLEC A , ŠTRUKELJ B . The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease[J]. Microorganisms, 2020, 8 (11): 1715. |
22 | ROJAS-FERIA M , ROMERO-GARCÍA T , FERNÁNDEZ CABALLERO-RICO J Á , et al. Modulation of faecal metagenome in Crohn's disease: Role of microRNAs as biomarkers[J]. World J Gastroenterol, 2018, 24 (46): 5223- 5233. |
23 | BELIZÁRIO J E , NAPOLITANO M . Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches[J]. Front Microbiol, 2015, 6, 1050. |
24 | BINDA C , LOPETUSO L R , RIZZATTI G , et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis[J]. Dig Liver Dis, 2018, 50 (5): 421- 428. |
25 | MUKHOPADHYA I , HANSEN R , EL-OMAR E M , et al. IBD—what role do Proteobacteria play?[J]. Nat Rev Gastroenterol Hepatol, 2012, 9 (4): 219- 230. |
26 | SHIN N R , WHON T W , BAE J W . Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends Biotechnol, 2015, 33 (9): 496- 503. |
27 | HSU P I , PAN C Y , KAO J Y , et al. Helicobacter pylori eradication with bismuth quadruple therapy leads to dysbiosis of gut microbiota with an increased relative abundance of Proteobacteria and decreased relative abundances of Bacteroidetes and Actinobacteria[J]. Helicobacter, 2018, 23 (4): e12498. |
28 | TREMAROLI V , BÄCKHED F . Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489 (7415): 242- 249. |
29 | WEI Z Y , RAO J H , TANG M T , et al. Characterization of changes and driver microbes in gut microbiota during healthy aging using a captive monkey model[J]. Genomics Proteomics Bioinformatics, 2022, 20 (2): 350- 365. |
30 | BURAKOVA I , SMIRNOVA Y , GRYAZNOVA M , et al. The effect of short-term consumption of lactic acid bacteria on the gut microbiota in obese people[J]. Nutrients, 2022, 14 (16): 3384. |
31 | CHEN L , SHEN Y , WANG C , et al. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models[J]. Front Microbiol, 2019, 10, 162. |
32 | KORT R , SCHLÖSSER J , VAZQUEZ A R , et al. Model selection reveals the butyrate-producing gut bacterium Coprococcus eutactus as predictor for language development in 3-year-old rural Ugandan children[J]. Front Microbiol, 2021, 12, 681485. |
33 | LEONG C , HASZARD J J , HEATH A M , et al. Using compositional principal component analysis to describe children's gut microbiota in relation to diet and body composition[J]. Am J Clin Nutr, 2020, 111 (1): 70- 78. |
34 | NOTTING F , PIROVANO W , SYBESMA W , et al. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders[J]. Gut Microbiome, 2023, 4, e16. |
35 | YANG X , LI D , ZHANG M , et al. Ginkgo biloba extract alleviates fatty liver hemorrhagic syndrome in laying hens via reshaping gut microbiota[J]. J Anim Sci Biotechnol, 2023, 14 (1): 97. |
36 | KHORSAND B , ASADZADEH AGHDAEI H , NAZEMALHOSSEINI-MOJARAD E , et al. Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn's disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets[J]. Front Cell Infect Microbiol, 2022, 12, 1015890. |
[1] | DING Yingying, ZHANG Jiayun, TANG Longxuan, ZHANG Shaohua, GUO Xiaola, PU Lixia, MOU Wenjie, WANG Shuai. Research Progress on the Regulatory Mechanisms of Intestinal Commensal Organisms on Intestinal Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1019-1026. |
[2] | ZHOU Wentao, WANG Chenyu, ZHOU Hui, LIU Hongbiao, FENG Shuhuan, FAN Gaosheng, LI Tiejun, HE Liuqin. Effects of Tannic Acid on Muscle Morphology, Flavor Amino Acids, and Expression of Muscle Fiber-related Genes in Immunostressed Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1290-1301. |
[3] | BAI Guosong, TENG Chunran, WANG Junhong, ZHONG Ruqing, MA Teng, CHEN Liang, ZHANG Hongfu. Effects of Enzymatic Corn Gluten Meal on Growth Performance and Intestinal Microorganisms of Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 953-968. |
[4] | Tana HE, Xinyun HU, Jielan MI, Li GAO, Yanping ZHANG, Xiaole QI, Hongyu CUI, Guilian YANG, Yulong GAO. Effect of Feeding Lactobacillus salivarius XP132 on the Gut Microbiota of White-feathered Broiler Breeder based on 16S rDNA Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4091-4099. |
[5] | Jiali ZHOU, Baolong DING, Ziming MA, Xingang DAN, Hongxi ZHAO. Research Progress on the Correlation between Endometritis and Gastrointestinal Microorganisms and the Role of Probiotics in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3321-3330. |
[6] | Weizhe LIU, Chenggang LUO, Rong YUAN, Yijie LIAO, Yimin WEN, Ying SUN, Enbo YU, Sanjie CAO, Xiaobo HUANG. Isolation and Identification of a Highly Pathogenic Strain of Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3049-3063. |
[7] | Bin LIU, Yan LIU, Chen ZHENG, Tao FENG. Effects of Glucosamine on Growth Performance, Antioxidant Capacity, and Immune Function in Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3246-3254. |
[8] | Qianling CHEN, Yuzhu SHA, Xiu LIU, Pengyang SHAO, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG, Zhuanhui XIE, Min GAO, Wei HUANG. Research Progress on the Interaction between Gut Microbiota and Mitochondria Regulating Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2293-2303. |
[9] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
[10] | CHEN Xueqing, LI Zhiqiang, WU Yulong, ZHANG Chonghao, ZHANG Yuanshu. Expression of Renin Angiotensin System (RAS) in Jejunum Tissues of Piglets with Clinical Diarrhea and Its Relationship with Intestinal Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 751-758. |
[11] | XIAO Le, LIU Junyuan, ZENG Wenyu, WANG Qin, HAN Wenjue, LIU Yanling, FAN Yu, XU Yuting, YANG Beini, XIAO Xiong, WANG Zili. Microbiome and Transcriptome Analyses Revealed the Regulatory Mechanism of Xiangsha Liujunzi Decoction on Ileal Injury Induced by ETEC in Weaned Piglets with Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 797-808. |
[12] | Lanmeng XU, Yuzhi HUANG, Yuzhu HAN, Changying LI, Jie ZHANG. Research Progress of Gut Microbiota Regulating Fat Deposition and Metabolic Related Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4263-4277. |
[13] | Zuobin YANG, Jincheng SHI, Ziwei MA, Rulong CHEN, Zhan SHU, Xin LI, Jinquan WANG, Qi ZHONG, Xuelian MA, Gang YAO. The Therapeutic Effect of the Fecal Microbiota Transplantation on Calf Non-specific Pathogenic Diarrhea and Bacterial Diarrhea in Association with Their Gut Microbiota Changes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4720-4734. |
[14] | HUANG Jiang, LI Chuang, CUI Yueqi, YUAN Xueying, ZHAO Zhicheng, LIU Yu, ZHOU Yulong, ZHU Zhanbo, ZHANG Zecai. Study on the Effect of Gut Microbiota Disturbance on Susceptibility to BVDV Based on a Mouse Model [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3466-3473. |
[15] | YU Shixiong, WEI Lingyun, XU Tiantian, JIAO Jinzhen, JIANG Linshu, HE Zhixiong. Research Progress of Intestinal Microbial Colonization Pattern in Young Ruminants and Its Nutritional Regulation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2701-2707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||