

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (10): 4774-4786.doi: 10.11843/j.issn.0366-6964.2025.10.002
• Review • Previous Articles Next Articles
SHAO Jiahao(
), ZHANG Yanjie, ZHAO Yongju*(
)
Received:2025-03-06
Online:2025-10-23
Published:2025-11-01
Contact:
ZHAO Yongju
E-mail:shaojh1997@163.com;zyongju@163.com
CLC Number:
SHAO Jiahao, ZHANG Yanjie, ZHAO Yongju. Research Progress of N6-methyladenosine (m6A) Modification in Regulation of Livestock and Poultry Genetic Breeding and Reproduction[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4774-4786.
Table 1
Study on m6A modification in pig reproduction"
| 细胞/组织 Cells/Tissues | 结果 Result | 参考文献 Reference |
| 颗粒细胞Granular cell | 绘制了颗粒细胞小卵泡(<3 mm)到大卵泡(>5 mm)发育过程中的m6A修饰 | Cao等[ |
| 卵母细胞Oocyte | 化学诱导的m6A修饰减少损伤卵母细胞成熟和发育 | Wang等[ |
| 精子Sperm | 绘制了精子在冷冻保存过程中的m6A修饰 | Qi等[ |
| 精子Sperm | 绘制了精原细胞、精母细胞及圆形精细胞的m6A修饰 | Liu等[ |
| 睾丸Testis | 绘制了猪不同发育阶段睾丸组织m6A修饰 | Chen等[ |
| 胚胎Embryo | m6A修饰参与调节猪早期胚胎发育 | Yu等[ |
| 胚胎Embryo | 高温暴露会改变m6A修饰,从而进一步影响猪的早期胚胎发育 | Sun等[ |
| 胎盘Placenta | 绘制了不同初生体重仔猪胎盘m6A修饰 | Song等[ |
Table 2
Relationship between m6A gene polymorphism and economic traits of domestic animal"
| 物种 Species | 基因 Gene | 经济性状 Trait | 方法 Method | 结果 Result | 参考文献 Reference |
| 韩牛Korea cattle | FTO | 肉质性状 | SNP | g.125550A>T SNP与大理石花纹性状显著相关 | Chung[ |
| 荷斯坦奶牛Holstein cows | FTO | 产奶性状 | SNP | FTO基因第6内含子中的SNP Hapmap51149BTA-42665对乳脂含量的影响最大 | Zielke等[ |
| 西门塔尔牛、布朗牛Simmental cattle, Brown cattle | FTO | 生长性状、酮体性状 | SNP | FTO变异与两品种牛的瘦肉率显著相关,FTO变异与西门塔尔牛屠宰时脂肪率、骨量和活重相关 | Jevsinek Skok等[ |
| 杂交鸭Hybrid duck | FTO | 肉质性状 | SNP | g.387G>A SNP与肌内脂肪含量、熟肉率、屠宰后45 min pH、胸肌滴水损失和腿肌滴水损失显著相关 | Gan等[ |
| 同羊Tong sheep | FTO | 生长性状、肥尾性状 | InDel | 8个InDel位点与部分生长性状显著相关,4个InDel位点与肥尾性状显著相关 | Wang等[ |
| 家兔Rabbit | FTO | 生长性状、肉质性状 | SNP | SNP c.499G>A (p.A167T)与35、70和84日龄新西兰兔体重显著相关。CC基因型SNP c.660 T>C与伊拉兔84日龄体重、平均日增重和腰最长肌脂肪含量显著高于TT和TC基因型 | Zhang等[ |
| 家兔Rabbit | FTO、IRS1 | 生长性状 | SNP | FTOc.499G>A和IRS1c.2574G>A的双基因组合模式与70和84日龄体重相关 | Zhang等[ |
| 1 |
SHAN Y L , ZHANG Y Q , WEI Y X , et al. METTL3/METTL14 maintain human nucleoli integrity by mediating SUV39H1/H2 degradation[J]. Nat Commun, 2024, 15 (1): 7186.
doi: 10.1038/s41467-024-51742-7 |
| 2 |
JIA G F , FU Y , ZHAO X , et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7 (12): 885- 887.
doi: 10.1038/nchembio.687 |
| 3 | CHEN A , ZHANG V X , ZHANG Q Y , et al. Targeting the oncogenic m6A demethylase FTO suppresses tumourigenesis and potentiates immune response in hepatocellular carcinoma[J]. Gut, 2024, 74 (1): 90- 102. |
| 4 |
XU B F , LIU D Y , WANG Z R , et al. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family[J]. Cell Mol Life Sci, 2021, 78 (1): 129- 141.
doi: 10.1007/s00018-020-03594-9 |
| 5 |
ZHAO Y C , SHI Y F , SHEN H F , et al. m6A-binding proteins: the emerging crucial performers in epigenetics[J]. J Hematol Oncol, 2020, 13 (1): 35.
doi: 10.1186/s13045-020-00872-8 |
| 6 |
DOU Y Q , WEI Y L , ZHANG Z , et al. Transcriptome-wide analysis of RNA m6A methylation regulation of muscle development in Queshan Black pigs[J]. BMC Genomics, 2023, 24 (1): 239.
doi: 10.1186/s12864-023-09346-w |
| 7 | QI K L , DOU Y Q , ZHANG Z , et al. Expression profile and regulatory properties of m6A-Modified circRNAs in the longissimus dorsi of Queshan Black and Large White Pigs[J]. Animals (Basel), 2023, 13 (13): 2190. |
| 8 |
XU W J , GUO K , SHI J L , et al. Glucocorticoid regulates the synthesis of porcine muscle protein through m6A modified amino acid transporter SLC7A7[J]. Int J Mol Sci, 2022, 23 (2): 661.
doi: 10.3390/ijms23020661 |
| 9 |
HU C J , JI F J , LV R L , et al. Putrescine promotes MMP9-induced angiogenesis in skeletal muscle through hydrogen peroxide/METTL3 pathway[J]. Free Radic Biol Med, 2024, 212, 433- 447.
doi: 10.1016/j.freeradbiomed.2023.12.041 |
| 10 |
WANG S S , TAN B H , XIAO L Y , et al. Comprehensive analysis of long noncoding RNA modified by m6A methylation in oxidative and glycolytic skeletal muscles[J]. Int J Mol Sci, 2022, 23 (9): 4600.
doi: 10.3390/ijms23094600 |
| 11 |
TAN B H , ZENG J K , MENG F M , et al. Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles[J]. BMC Genomics, 2022, 23 (1): 804.
doi: 10.1186/s12864-022-09043-0 |
| 12 |
ZHANG D , WU S M , ZHANG X X , et al. Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs[J]. J Anim Sci Biotechnol, 2022, 13 (1): 146.
doi: 10.1186/s40104-022-00791-3 |
| 13 | DENG K P , LIU Z P , LI X D , et al. Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway[J]. Int J Biol Macromol, 2024, 254 (1): 127614. |
| 14 |
DENG K P , ZHANG Z , REN C F , et al. FTO regulates myoblast proliferation by controlling CCND1 expression in an m6A-YTHDF2-dependent manner[J]. Exp Cell Res, 2021, 401 (2): 112524.
doi: 10.1016/j.yexcr.2021.112524 |
| 15 |
DENG K P , FAN Y X , LIANG Y X , et al. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway[J]. Mol Ther Nucleic Acids, 2021, 26, 34- 48.
doi: 10.1016/j.omtn.2021.06.013 |
| 16 |
ZHAO S , CAO J X , SUN Y J , et al. METTL3 promotes the differentiation of goat skeletal muscle satellite cells by regulating MEF2C mRNA stability in a m6A-dependent manner[J]. Int J Mol Sci, 2023, 24 (18): 14115.
doi: 10.3390/ijms241814115 |
| 17 |
DANG Y L , DONG Q , WU B W , et al. Global landscape of m6A methylation of differently expressed genes in muscle tissue of Liaoyu White Cattle and Simmental Cattle[J]. Front Cell Dev Biol, 2022, 10, 840513.
doi: 10.3389/fcell.2022.840513 |
| 18 |
HUANG C , DAI R F , MENG G Y , et al. Transcriptome-wide study of mRNAs and lncRNAs modified by m6A RNA methylation in the longissimus dorsi muscle development of cattle-yak[J]. Cells, 2022, 11 (22): 3654.
doi: 10.3390/cells11223654 |
| 19 |
YANG X R , WANG J F , MA X H , et al. Transcriptome-wide N6-methyladenosine methylome profiling reveals m6A regulation of skeletal myoblast differentiation in cattle (Bos taurus)[J]. Front Cell Dev Biol, 2021, 9, 785380.
doi: 10.3389/fcell.2021.785380 |
| 20 |
MAO C , YOU W , YANG Y T , et al. Comprehensive characterization of lncRNA N6-methyladenosine modification dynamics throughout bovine skeletal muscle development[J]. J Anim Sci Biotechnol, 2025, 16 (1): 36.
doi: 10.1186/s40104-025-01164-2 |
| 21 | YANG X R , MEI C G , MA X H , et al. m6A methylases regulate myoblast proliferation, apoptosis and differentiation[J]. Animals (Basel), 2022, 12 (6): 773. |
| 22 | 茹文秀. METTL3通过m6A修饰调控牛成肌细胞发育的功能与机制研究[D]. 咸阳: 西北农林科技大学, 2022. |
| RU W X. Function and mechanism of METTL3 regulating bovine myoblast development through m6A modification[D]. Xianyang: Northwest A&F University, 2022. (in Chinese) | |
| 23 |
YANG X R , NING Y , ABBAS RAZA S H , et al. MEF2C expression is regulated by the post-transcriptional activation of the METTL3-m6A-YTHDF1 axis in myoblast differentiation[J]. Front Vet Sci, 2022, 9, 900924.
doi: 10.3389/fvets.2022.900924 |
| 24 | YANG X R , MEI C G , ABBAS RAZA S H , et al. Interactive regulation of DNA demethylase gene TET1 and m6A methyltransferase gene METTL3 in myoblast differentiation[J]. Int J Biol Macromol, 2022, 223 (A): 916- 930. |
| 25 |
GU L H , JIANG Q C , CHEN Y Y , et al. Transcriptome-wide study revealed m6A and miRNA regulation of embryonic breast muscle development in Wenchang chickens[J]. Front Vet Sci, 2022, 9, 934728.
doi: 10.3389/fvets.2022.934728 |
| 26 |
GU L H , ZHANG S J , LI B L , et al. m6A and miRNA jointly regulate the development of breast muscles in duck embryonic stages[J]. Front Vet Sci, 2022, 9, 933850.
doi: 10.3389/fvets.2022.933850 |
| 27 | CHEN B , LIU S B , ZHANG W T , et al. Profiling analysis of N6-methyladenosine mRNA methylation reveals differential m6A Patterns during the embryonic skeletal muscle development of ducks[J]. Animals (Basel), 2022, 12 (19): 2593. |
| 28 |
XU T S , XU Z J , LU L Z , et al. Transcriptome-wide study revealed m6A regulation of embryonic muscle development in Dingan goose (Anser cygnoides orientalis)[J]. BMC Genomics, 2021, 22 (1): 270.
doi: 10.1186/s12864-021-07556-8 |
| 29 |
WANG Z J , JU X , LI K , et al. MeRIP sequencing reveals the regulation of N6-methyladenosine in muscle development between hypertrophic and leaner broilers[J]. Poult Sci, 2024, 103 (6): 103708.
doi: 10.1016/j.psj.2024.103708 |
| 30 | YU B J , CAI Z Y , LIU J M , et al. Identification of key differentially methylated genes in regulating muscle development and intramuscular fat deposition in chickens[J]. Int J Biol Macromol, 2024, 264 (2): 130737. |
| 31 |
CHAO X H , GUO L J , YE C T , et al. ALKBH5 regulates chicken adipogenesis by mediating LCAT mRNA stability depending on m6A modification[J]. BMC Genomics, 2024, 25 (1): 634.
doi: 10.1186/s12864-024-10537-2 |
| 32 |
ZHANG Q , CHENG B H , JIANG H X , et al. N6-methyladenosine demethylase ALKBH5:a novel regulator of proliferation and differentiation of chicken preadipocytes[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54 (1): 55- 63.
doi: 10.3724/abbs.2021007 |
| 33 |
SHAN Y J , LIU Y F , ZHANG M , et al. The m6A modification regulates the composition of myofiber types in chicken skeletal muscle[J]. Poult Sci, 2025, 104 (3): 104811.
doi: 10.1016/j.psj.2025.104811 |
| 34 | LIU J , ZHANG W T , LUO W , et al. Cloning of the RNA m6A methyltransferase 3 and its impact on the proliferation and differentiation of quail myoblasts[J]. Vet Sci, 2023, 10 (4): 300. |
| 35 |
TAO X L , CHEN J N , JIANG Y Z , et al. Transcriptome-wide N 6 -methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern[J]. BMC Genomics, 2017, 18 (1): 336.
doi: 10.1186/s12864-017-3719-1 |
| 36 |
WANG X X , SUN B F , JIANG Q , et al. mRNA m6A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes[J]. Int J Obes (Lond), 2018, 42 (11): 1912- 1924.
doi: 10.1038/s41366-018-0027-z |
| 37 |
GONG H F , GONG T , LIU Y H , et al. Profiling of N6-methyladenosine methylation in porcine longissimus dorsi muscle and unravelling the hub gene ADIPOQ promotes adipogenesis in an m6A-YTHDF1-dependent manner[J]. J Anim Sci Biotechnol, 2023, 14 (1): 50.
doi: 10.1186/s40104-023-00833-4 |
| 38 |
WANG X X , ZHU L N , CHEN J Q , et al. mRNA m6A methylation downregulates adipogenesis in porcine adipocytes[J]. Biochem Biophys Res Commun, 2015, 459 (2): 201- 207.
doi: 10.1016/j.bbrc.2015.02.048 |
| 39 |
WU R F , GUO G Q , BI Z , et al. m6A methylation modulates adipogenesis through JAK2-STAT3-C/EBPβ signaling[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862 (8): 796- 806.
doi: 10.1016/j.bbagrm.2019.06.008 |
| 40 | CHAO M K , WANG M Y , HAN H Z , et al. Profiling of m6A methylation in porcine intramuscular adipocytes and unravelling PHKG1 represses porcine intramuscular lipid deposition in an m6A-dependent manner[J]. Int J Biol Macromol, 2024, 272 (1): 132728. |
| 41 |
YAO Y X , BI Z , WU R F , et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2-dependent manner[J]. FASEB J, 2019, 33 (6): 7529- 7544.
doi: 10.1096/fj.201802644R |
| 42 |
HENG J H , WU Z H , TIAN M , et al. Excessive BCAA regulates fat metabolism partially through the modification of m6A RNA methylation in weanling piglets[J]. Nutr Metab (Lond), 2020, 17, 10.
doi: 10.1186/s12986-019-0424-x |
| 43 |
HENG J H , TIAN M , ZHANG W F , et al. Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets[J]. Cell Stress Chaperones, 2019, 24 (3): 635- 645.
doi: 10.1007/s12192-019-01002-1 |
| 44 |
KANG H F , ZHANG Z W , YU L , et al. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation[J]. J Cell Biochem, 2018, 119 (7): 5676- 5685.
doi: 10.1002/jcb.26746 |
| 45 |
WANG J M , LI X , QUBI W Q , et al. The important role of m6A-modified circRNAs in the differentiation of intramuscular adipocytes in goats based on MeRIP sequencing analysis[J]. Int J Mol Sci, 2023, 24 (5): 4817.
doi: 10.3390/ijms24054817 |
| 46 | WANG Y , WU Y N , YANG S T , et al. m6A methylation mediates the function of the circRNA-08436/miR-195/ELOVL6 axis in regards to lipid metabolism in dairy goat mammary glands[J]. Animals (Basel), 2024, 14 (12): 1715. |
| 47 | LUO G , WANG S H , AI Y T , et al. N6-methyladenosine methylome profiling of muscle and adipose tissues reveals methylase-mRNA metabolic regulatory networks in fat deposition of rex rabbits[J]. Biology (Basel), 2022, 11 (7): 944. |
| 48 | LUO G , AI Y T , YU L , et al. The characterization and differential analysis of m6A methylation in hycole rabbit muscle and adipose tissue and prediction of regulatory mechanism about intramuscular Fat[J]. Animals (Basel), 2023, 13 (3): 446. |
| 49 |
LUO G , HONG T T , YU L , et al. FTO regulated intramuscular fat by targeting APMAP Gene via an m6A-YTHDF2-dependent manner in rex rabbits[J]. Cells, 2023, 12 (3): 369.
doi: 10.3390/cells12030369 |
| 50 |
LUO G , AI Y T , ZHU T Y , et al. FTO promoted adipocyte differentiation by regulating ADRB1 gene through m6A modification in Hycole rabbits[J]. Anim Biotechnol, 2023, 34 (7): 2565- 2570.
doi: 10.1080/10495398.2022.2105229 |
| 51 |
LUO G , ZHU T Y , REN Z J . METTL3 regulated the meat quality of Rex rabbits by controlling PCK2 expression via a YTHDF2-N6-methyladenosine axis[J]. Foods, 2022, 11 (11): 1549.
doi: 10.3390/foods11111549 |
| 52 |
FENG Y , LI Y L , JIANG W D , et al. GR-mediated transcriptional regulation of m6A metabolic genes contributes to diet-induced fatty liver in hens[J]. J Anim Sci Biotechnol, 2021, 12 (1): 117.
doi: 10.1186/s40104-021-00642-7 |
| 53 |
HU Y , FENG Y , ZHANG L C , et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs[J]. RNA Biol, 2020, 17 (7): 930- 942.
doi: 10.1080/15476286.2020.1736868 |
| 54 | ZHANG Y , GUO F , ZHAO R . Hepatic expression of FTO and fatty acid metabolic genes changes in response to lipopolysaccharide with alterations in m6A modification of relevant mRNAs in the chicken[J]. Br Poult Sci, 2016, 57 (5): 628- 635. |
| 55 |
GUO F , ZHANG Y H , MA J Y , et al. m6A mRNA methylation was associated with gene expression and lipid metabolism in liver of broilers under lipopolysaccharide stimulation[J]. Front Genet, 2022, 13, 818357.
doi: 10.3389/fgene.2022.818357 |
| 56 |
CHENG B H , LENG L , LI Z W , et al. Profiling of RNA N6 -methyladenosine methylation reveals the critical role of m6A in chicken adipose deposition[J]. Front Cell Dev Biol, 2021, 9, 590468.
doi: 10.3389/fcell.2021.590468 |
| 57 |
LI K , HUANG W C , WANG Z J , et al. m6A demethylase FTO regulate CTNNB1 to promote adipogenesis of chicken preadipocyte[J]. J Anim Sci Biotechnol, 2022, 13 (1): 147.
doi: 10.1186/s40104-022-00795-z |
| 58 |
ZHOU Z X , ZHANG A J , LIU X Y , et al. m6A-mediated PPARA translational suppression contributes to corticosterone-induced visceral fat deposition in chickens[J]. Int J Mol Sci, 2022, 23 (24): 15761.
doi: 10.3390/ijms232415761 |
| 59 |
YU B J , LIU J M , CAI Z Y , et al. RNA N6-methyladenosine profiling reveals differentially methylated genes associated with intramuscular fat metabolism during breast muscle development in chicken[J]. Poult Sci, 2023, 102 (8): 102793.
doi: 10.1016/j.psj.2023.102793 |
| 60 |
ZHANG T , YU B J , CAI Z Y , et al. Regulatory role of N6-methyladenosine in intramuscular fat deposition in chicken[J]. Poult Sci, 2023, 102 (10): 102972.
doi: 10.1016/j.psj.2023.102972 |
| 61 |
CAO M S , CHEN X , WANG Y Y , et al. The reduction of the m6A methyltransferase METTL3 in granulosa cells is related to the follicular cysts in pigs[J]. J Cell Physiol, 2024, 239 (6): e31289.
doi: 10.1002/jcp.31289 |
| 62 |
LI Z D , RUAN Z Y , FENG Y , et al. METTL3-mediated m6A methylation regulates granulosa cells autophagy during follicular atresia in pig ovaries[J]. Theriogenology, 2023, 201, 83- 94.
doi: 10.1016/j.theriogenology.2023.02.021 |
| 63 |
CAO Z B , ZHANG L , HONG R Y , et al. METTL3-mediated m6A methylation negatively modulates autophagy to support porcine blastocyst development[J]. Biol Reprod, 2021, 104 (5): 1008- 1021.
doi: 10.1093/biolre/ioab022 |
| 64 |
ZHANG M Y , WU X Q , GUO T L , et al. Involvement of METTL3-mediated m6A methylation in the early development of porcine cloned embryos[J]. Theriogenology, 2024, 226, 378- 386.
doi: 10.1016/j.theriogenology.2024.06.021 |
| 65 |
ZHANG M , ZHAI Y H , AN X L , et al. DNA methylation regulates RNA m6A modification through transcription factor SP1 during the development of porcine somatic cell nuclear transfer embryos[J]. Cell Prolif, 2024, 57 (5): e13581.
doi: 10.1111/cpr.13581 |
| 66 |
CAO Z B , ZHANG D D , WANG Y Q , et al. Identification and functional annotation of m6A methylation modification in granulosa cells during antral follicle development in pigs[J]. Anim Reprod Sci, 2020, 219, 106510.
doi: 10.1016/j.anireprosci.2020.106510 |
| 67 |
WANG Y K , YU X X , LIU Y H , et al. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes[J]. Theriogenology, 2018, 121, 160- 167.
doi: 10.1016/j.theriogenology.2018.08.009 |
| 68 |
ZHANG M , ZHANG S , ZHAI Y H , et al. Cycloleucine negatively regulates porcine oocyte maturation and embryo development by modulating N6-methyladenosine and histone modifications[J]. Theriogenology, 2022, 179, 128- 140.
doi: 10.1016/j.theriogenology.2021.11.024 |
| 69 |
QI Z Y , WANG W C , ALI M A , et al. Transcriptome-wide m6A profiling reveals mRNA post-transcriptional modification of boar sperm during cryopreservation[J]. BMC Genomics, 2021, 22 (1): 588.
doi: 10.1186/s12864-021-07904-8 |
| 70 |
LIU Z D , CHEN X X , ZHANG P F , et al. Transcriptome-wide dynamics of m6A mRNA methylation during porcine spermatogenesis[J]. Genomics Proteomics Bioinformatics, 2023, 21 (4): 729- 741.
doi: 10.1016/j.gpb.2021.08.006 |
| 71 |
CHEN C J , TANG X W , YAN S N , et al. Comprehensive analysis of the transcriptome-wide m6A methylome in Shaziling pig testicular development[J]. Int J Mol Sci, 2023, 24 (19): 14475.
doi: 10.3390/ijms241914475 |
| 72 |
ZHANG P F , ZHANG F , SUI H M , et al. Characterization of sexual maturity-associated N6-methyladenosine in boar testes[J]. BMC Genomics, 2024, 25 (1): 447.
doi: 10.1186/s12864-024-10343-w |
| 73 |
YU T , QI X , ZHANG L , et al. Dynamic reprogramming and function of RNA N6-methyladenosine modification during porcine early embryonic development[J]. Zygote, 2021, 29 (6): 417- 426.
doi: 10.1017/S0967199420000799 |
| 74 |
SUN M H , JIANG W J , LI X H , et al. High temperature-induced m6A epigenetic changes affect early porcine embryonic developmental competence in pigs[J]. Microsc Microanal, 2023, 29 (6): 2174- 2183.
doi: 10.1093/micmic/ozad131 |
| 75 |
SONG T X , LU J X , DENG Z , et al. Maternal obesity aggravates the abnormality of porcine placenta by increasing N6-methyladenosine[J]. Int J Obes (Lond), 2018, 42 (10): 1812- 1820.
doi: 10.1038/s41366-018-0113-2 |
| 76 |
SUN Y , ZHANG X C , LI M D , et al. METTL3 promotes proliferation of goat endometrial epithelial cells by regulating CTGF in an m6A-dependent manner[J]. Biol Reprod, 2023, 108 (6): 902- 911.
doi: 10.1093/biolre/ioad029 |
| 77 |
LI D X , LIU Z F , DENG M T , et al. The function of the m6A methyltransferase METTL3 in goat early embryo development under hypoxic and normoxic conditions[J]. Theriogenology, 2022, 177, 140- 150.
doi: 10.1016/j.theriogenology.2021.10.017 |
| 78 |
DENG M T , CHEN B B , LIU Z F , et al. YTHDF2 regulates maternal transcriptome degradation and embryo development in goat[J]. Front Cell Dev Biol, 2020, 8, 580367.
doi: 10.3389/fcell.2020.580367 |
| 79 |
LIU Z F , ZHOU L , LI D X , et al. N6-methyladenosine methyltransferase METTL3 modulates the cell cycle of granulosa cells via CCND1 and AURKB in Haimen goats[J]. FASEB J, 2023, 37 (11): e23273.
doi: 10.1096/fj.202301232R |
| 80 |
LI D X , ZHOU L , LIU Z F , et al. FTO demethylates regulates cell-cycle progression by controlling CCND1 expression in luteinizing goat granulosa cells[J]. Theriogenology, 2024, 216, 20- 29.
doi: 10.1016/j.theriogenology.2023.12.029 |
| 81 |
WANG S J , ZHANG L , XUAN R , et al. Identification and functional analysis of m6A in the mammary gland tissues of dairy goats at the early and peak lactation stages[J]. Front Cell Dev Biol, 2022, 10, 945202.
doi: 10.3389/fcell.2022.945202 |
| 82 |
XI B P , LU Z K , ZHANG R , et al. Comprehensive analysis of the transcriptome-wide m6A Methylome in sheep testicular development[J]. Genomics, 2025, 117 (2): 111005.
doi: 10.1016/j.ygeno.2025.111005 |
| 83 |
LIU Z F , CAI Y , DENG M T , et al. Expression pattern of alkB homolog 5 in goat testis and its role in spermatogonial stem cells[J]. Cell Tissue Res, 2022, 387 (1): 131- 142.
doi: 10.1007/s00441-021-03550-4 |
| 84 |
MOURA F H , MACIAS-FRANCO A , PENA-BELLO C A , et al. Sperm DNA 5-methyl cytosine and RNA N6-methyladenosine methylation are differently affected during periods of body weight losses and body weight gain of young and mature breeding bulls[J]. J Anim Sci, 2022, 100 (2): skab362.
doi: 10.1093/jas/skab362 |
| 85 |
LIU S H , MA X Y , YUE T T , et al. Transcriptome-wide m6A analysis provides novel insights into testicular development and spermatogenesis in Xia-Nan cattle[J]. Front Cell Dev Biol, 2021, 9, 791221.
doi: 10.3389/fcell.2021.791221 |
| 86 |
WANG X D , PEI J , GUO S K , et al. Characterization of N6-methyladenosine in cattle-yak testis tissue[J]. Front Vet Sci, 2022, 9, 971515.
doi: 10.3389/fvets.2022.971515 |
| 87 |
CHEN H Y , ZHANG J M , YAN Y , et al. N6-methyladenosine RNA demethylase ALKBH5 is testis-specifically downregulated in hybrid male sterile dzo and is a target gene of bta-miR-200a[J]. Theriogenology, 2022, 187, 51- 57.
doi: 10.1016/j.theriogenology.2022.04.022 |
| 88 |
GUO S K , WANG X D , CAO M L , et al. The transcriptome-wide N6-methyladenosine (m6A) map profiling reveals the regulatory role of m6A in the yak ovary[J]. BMC Genomics, 2022, 23 (1): 358.
doi: 10.1186/s12864-022-08585-7 |
| 89 |
DING H , LI Z Q , LI X , et al. FTO alleviates CdCl2-induced apoptosis and oxidative stress via the AKT/Nrf2 pathway in bovine granulosa cells[J]. Int J Mol Sci, 2022, 23 (9): 4948.
doi: 10.3390/ijms23094948 |
| 90 |
LI J B , ZHANG X A , WANG X Q , et al. The m6A methylation regulates gonadal sex differentiation in chicken embryo[J]. J Anim Sci Biotechnol, 2022, 13 (1): 52.
doi: 10.1186/s40104-022-00710-6 |
| 91 |
JIA C J , ZHANG M L , LIU X Y , et al. Transcriptome-wide m6A methylation profiling of Wuhua yellow-feathered chicken ovary revealed regulatory pathways underlying sexual maturation and low egg-laying performance[J]. Front Genet, 2023, 14, 1284554.
doi: 10.3389/fgene.2023.1284554 |
| 92 |
FAN Y , ZHANG C S , ZHU G Y . Profiling of RNA N6-methyladenosine methylation during follicle selection in chicken ovary[J]. Poult Sci, 2019, 98 (11): 6117- 6124.
doi: 10.3382/ps/pez277 |
| 93 |
CHUNG E R . Novel SNP in the coding region of the FTO gene is associated with marbling score in Hanwoo (Korean cattle)[J]. J Anim Sci Technol, 2014, 56, 27.
doi: 10.1186/2055-0391-56-27 |
| 94 |
ZIELKE L G , BORTFELDT R H , REISSMANN M , et al. Impact of variation at the FTO locus on milk fat yield in Holstein dairy cattle[J]. PLoS One, 2013, 8 (5): e63406.
doi: 10.1371/journal.pone.0063406 |
| 95 |
JEVSINEK SKOK D , KUNEJ T , KOVAC M , et al. FTO gene variants are associated with growth and carcass traits in cattle[J]. Anim Genet, 2016, 47 (2): 219- 222.
doi: 10.1111/age.12403 |
| 96 |
GAN W , SONG Q , ZHANG N N , et al. Association between FTO polymorphism in exon 3 with carcass and meat quality traits in crossbred ducks[J]. Genet Mol Res, 2015, 14 (2): 6699- 6714.
doi: 10.4238/2015.June.18.14 |
| 97 |
WANG S H , LIU S R , YUAN T T , et al. Genetic effects of FTO gene insertion/deletion (InDel) on fat-tail measurements and growth traits in Tong sheep[J]. Anim Biotechnol, 2021, 32 (2): 229- 239.
doi: 10.1080/10495398.2019.1680379 |
| 98 |
ZHANG G W , GAO L , CHEN S Y , et al. Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits[J]. Gene, 2013, 527 (2): 553- 557.
doi: 10.1016/j.gene.2013.06.024 |
| 99 |
ZHANG G W , JIA W , CHEN S Y , et al. Association between the IRS1 and FTO genes regulates body weight in rabbits[J]. Gene, 2014, 548 (1): 75- 80.
doi: 10.1016/j.gene.2014.07.011 |
| 100 | LU Z K , LIU J B , YUAN C , et al. m6A mRNA methylation analysis provides novel insights into heat stress responses in the liver tissue of sheep[J]. Genomics, 2021, 113 (1 Pt 2): 484- 492. |
| 101 |
CHEN B W , YUAN C , GUO T T , et al. Molecular mechanism of m6A methylation modification genes METTL3 and FTO in regulating heat stress in sheep[J]. Int J Mol Sci, 2023, 24 (15): 11926.
doi: 10.3390/ijms241511926 |
| 102 |
LU Z K , MA Y J , LI Q , et al. The role of N6-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries)[J]. Cell Stress Chaperones, 2019, 24 (2): 333- 342.
doi: 10.1007/s12192-018-00965-x |
| 103 |
QI Y , ZHANG Y M , ZHANG J , et al. The alteration of N6-methyladenosine (m6A) modification at the transcriptome-wide level in response of heat stress in bovine mammary epithelial cells[J]. BMC Genomics, 2022, 23 (1): 829.
doi: 10.1186/s12864-022-09067-6 |
| 104 |
WANG Y R , ZHENG Y Y , GUO D , et al. m6A methylation analysis of differentially expressed genes in skin tissues of coarse and fine type Liaoning Cashmere goats[J]. Front Genet, 2020, 10, 1318.
doi: 10.3389/fgene.2019.01318 |
| 105 |
WANG Y R , LI G Q , ZHANG X J , et al. Analysis of m6A methylation in skin tissues of different sex Liaoning cashmere goats[J]. Anim Biotechnol, 2023, 34 (2): 310- 320.
doi: 10.1080/10495398.2021.1962897 |
| 106 | HUI T Y , ZHU Y B , SHEN J C , et al. Identification and molecular analysis of m6A-circRNAs from cashmere goat reveal their integrated regulatory network and putative functions in secondary hair follicle during anagen stage[J]. Animals (Basel), 2022, 12 (6): 694. |
| 107 |
YIN R H , YIN R L , BAI M , et al. N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats[J]. Anim Biosci, 2023, 36 (4): 555- 569.
doi: 10.5713/ab.22.0211 |
| 108 | ZHANG Q , FAN Y X , BAI M , et al. CircERCC6 positively regulates the induced activation of SHF stem cells in cashmere goats via the miR-412-3p/BNC2 axis in an m6A-dependent manner[J]. Animals (Basel), 2024, 14 (2): 187. |
| 109 |
ZHAO Y Y , MENG J Z , SONG X C , et al. m6A mRNA methylation analysis provides novel insights into pigmentation in sheep skin[J]. Epigenetics, 2023, 18 (1): 2230662.
doi: 10.1080/15592294.2023.2230662 |
| 110 |
MENG J Z , LI J P , ZHAO Y Y . Comprehensive analysis of lncRNAs modi ed by m6A methylation in sheep skin[J]. Anim Biosci, 2024, 37 (11): 1887- 1990.
doi: 10.5713/ab.24.0039 |
| 111 | HUA G Y , YANG X , MA Y H , et al. m6A methylation analysis reveals networks and key genes underlying the coarse and fine wool traits in a full-sib Merino family[J]. Biology (Basel), 2022, 11 (11): 1637. |
| 112 | LUO G , GONG R G , AI Y T , et al. Identification of N6-methyladenosine-related factors and the prediction of the regulatory mechanism of hair follicle development in Rex and Hycole Rabbits[J]. Biology (Basel), 2023, 12 (11): 1448. |
| 113 |
ZONG X , XIAO X , SHEN B , et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response[J]. Nucleic Acids Res, 2021, 49 (10): 5537- 5552.
doi: 10.1093/nar/gkab343 |
| 114 |
ZONG X , ZHAO J , WANG H , et al. Mettl3 deficiency sustains long-chain fatty acid absorption through suppressing Traf6-dependent inflammation response[J]. J Immunol, 2019, 202 (2): 567- 578.
doi: 10.4049/jimmunol.1801151 |
| 115 | 吴嘉韵. METTL3介导m6A修饰对呕吐毒素诱导猪小肠上皮细胞损伤的调控作用及机制研究[D]. 扬州: 扬州大学, 2022. |
| WU J Y. Regulation and mechanism of METTL3-mediated m6A modification involved in DON-induced IPEC-J2 Injury[D]. Yangzhou: Yangzhou University, 2022. (in Chinese) | |
| 116 | 王诗琴. METTL3介导m6A修饰对断奶仔猪F18大肠杆菌抗性的调控机制分析[D]. 扬州: 扬州大学, 2021. |
| WANG S Q. Analysis of the regulatory mechanism of METTL3-meidated m6A modification on E. coli F18 resistance in weaned piglets[D]. Yangzhou: Yangzhou University, 2022. (in Chinese) | |
| 117 | 许写. WTAP介导m6A修饰对猪小肠上皮细胞抵御E. coli F18感染的作用及机制研究[D]. 扬州: 扬州大学, 2022. |
| XU X. Analysis of the role and mechanism of WATP-mediated m6A modification on resistance to E. coli F18 infection in IPEC-J2[D]. Yangzhou: Yangzhou University, 2022. (in Chinese) |
| [1] | LIN Xiao, LI Ruijie, LIU Long, GENG Tuoyu, GONG Daoqing. Research Progress on Sex Determining Genes and Their Methylation Regulation in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4129-4142. |
| [2] | BAI Guangdong, LOU Zekai, WANG Ruiqi, ZHAO Xuan, LI Jiawei, XIA Yaoyao, PANG Jiaman. Advances in m6A Methylation Modification and Nutritional Regulation in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4215-4231. |
| [3] | YANG Xin, WANG Shaoyu, TONG Chang, PENG Zhitao, CAI Shenghuang, HUANG Junxiong, XU Jiaojiao, WEN Xin, WU Yinbao. Research Progress on the Horizontal Gene Transfer of Antibiotic Resistance Genes from Livestock and Poultry Manure [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4279-4293. |
| [4] | LI Kang, CHEN Siying, SUN Yawen, LENG Xuan, WANG Dong, CUI Kai, PANG Yunwei. Effects of Betaine on Preimplantation Development of Porcine Parthenogenetic Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3826-3836. |
| [5] | ZHANG Fan, ZENG Wei, ZHOU Ao. Advances in Gene Editing for Disease Resistance Breeding in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3047-3056. |
| [6] | BAI Yuanyuan, CAI Wenyi, XING Jiayi, JIANG Yuting, MA Zhiwei, JI Wenhui, LAN Daoliang. Comparative Transcriptome Mapping of the Lungs of Yak, Dzho, and Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3226-3243. |
| [7] | TANG Yu, ZHANG Ying, YANG Yifeng, XUE Hailong, LIU Lixiang, XU Baozeng. Mechanisms of Glycine Improving Vitrification Cryopreservation Efficiency of Mink Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3265-3277. |
| [8] | HOU Zhongyi, WANG Baowei, ZHANG Ming'ai, KONG Min, ZHANG Jing, WANG Binghan, YUE Bin, LU Xiu, FAN Wenlei. The Regulation Mechanism of Lipid Metabolism in Foie Gras Formation Based on Proteomics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2182-2193. |
| [9] | WANG Zhuo, ZHAO Yuwei, TU Yan, DIAO Qiyu, CUI Kai. Research Progress on Biological Characteristics of β-defensins and Their Roles in Regulating Intestinal Barrier in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 995-1005. |
| [10] | WANG Hong, ZHAO Weimin, CHENG Jinhua, LI Huixia, FANG Xiaomin. Identification and Transcriptional Regulation Analysis of the Core Promoter of Porcine CYP3A29 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1147-1158. |
| [11] | XIE Xiulan, WANG Jiandong, YAN Shiying, GAO Haihui, YANG Yuwei, ZHAO Jian. Effects of Lactiplantibacillus plantarum X86 on the Early Development and Gut Microbiota of Offspring in Rats [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 5315-5327. |
| [12] | CHANG Xuan, WEI Bingni, ZHANG Xiaoli, ZHAO Zhongquan, CHEN Juncai. Research Progress of Gastrointestinal Symbiotic Fungi in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 63-73. |
| [13] | Qingzheng WANG, Xiaojie XIAO, Fuqing HUANG, Xinyu JI, Xin ZHANG, Manli HU. The Role of Dietary Nutrients in Allergic Skin Diseases in Dogs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3777-3791. |
| [14] | Hongyu FU, Yue LI, Han CUI, Jiuzhi LI, Wanxue XU, Xi WANG, Ruifeng FAN. The Mechanism of Long-Chain acyl-CoA Synthetase 4-mediated Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3792-3801. |
| [15] | Zhangrong PENG, Haoran SUN, Qiaoru ZHANG, Ying YANG, Hongying GUO, Tong CHANG, Hui ZHAO, Tietao ZHANG. Study on the Pattern of Intramuscular Fat Deposition and Its Influence in Flavor Quality of Sika Deer at Different Ages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3541-3551. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||