Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (3): 1147-1158.doi: 10.11843/j.issn.0366-6964.2025.03.016
• Animal Genetics and Breeding • Previous Articles Next Articles
WANG Hong1,2(), ZHAO Weimin3, CHENG Jinhua3, LI Huixia2,*(
), FANG Xiaomin1,*(
)
Received:
2024-10-11
Online:
2025-03-23
Published:
2025-04-02
Contact:
LI Huixia, FANG Xiaomin
E-mail:2749363442@qq.com;lihuixia@njau.edu.cn;fxmw2000@163.com
CLC Number:
WANG Hong, ZHAO Weimin, CHENG Jinhua, LI Huixia, FANG Xiaomin. Identification and Transcriptional Regulation Analysis of the Core Promoter of Porcine CYP3A29 Gene[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1147-1158.
Table 1
Primers sequence information of CYP3A29 promoter fragment amplification"
引物Primer | 引物序列(5′→3′)Primer sequence | 片段长度/bp Length |
PGL-CYP3A29(-2 026~+62)-F1 | GCTG$\underline{{\rm{GCTAGC}}}$ TCTACTTCATGGTGCCCAGAG | 2 088 |
PGL-CYP3A29(-1 526~+62)-F2 | GCTG$\underline{{\rm{GCTAGC}}}$GAGCTGGGACTCACTGCATG | 1 588 |
PGL-CYP3A29(-1 026~+62)-F3 | GCTG$\underline{{\rm{GCTAGC}}}$TTCCTGCGTCACACCCTTCA | 1 088 |
PGL-CYP3A29(-528~+62)-F4 | GCTC$\underline{{\rm{GCTAGC}}}$AATTGTGCTCAGGCGGATAG | 590 |
PGL-CYP3A29(-448~+62)-F5 | GCTC$\underline{{\rm{GCTAGC}}}$AAGATAGACTATTCTTTCTGAGC | 510 |
PGL-CYP3A29(-289~+62)-F6 | GCTC$\underline{{\rm{GCTAGC}}}$GGAGACATGGCATTTTATAGG | 351 |
PGL-CYP3A29(-96~+62)-F7 | GCTC$\underline{{\rm{GCTAGC}}}$TGGTGTTTTTTCACTGGCTGC | 158 |
PGL-CYP3A29-promoter-R | CCCAAGCTTGCCACTGTCCTCGTGATTCT | |
CYP3A29 | F: ACATCTTTGGGGCCTACAGC R: AGATCGGGGTGAGGAATGGA | 177 |
HPRT(pig) | F: TGACCAGTCAACGGGCGATA R: CAACACTTCGAGGGGTCCTT | 197 |
HPRT(mouse) | F: CCATCACATTGTGGCCCTCT R: TTATGTCCCCCGTTGACTGA | 167 |
RUNX1 | F: TGGCAGGCAACGATGAAAAC R: GCAACTTGTGGCGGATTTGT | 163 |
Spi1 | F: GAACCACTTCACAGAGCTGC R: GTCATCTTCTTGCGGTTGCC | 474 |
Spib | F: CAGAGGACTTCACCAGCCAG R: GAGGAGAACTGGAAGACGCC | 232 |
Table 2
Primers sequence information of RUNX1 gene interference vector"
引物Primer | 引物序列(5′→3′)Primer sequence |
shRUNX1-F | CACC$\underline{{\rm{GCAGAACTGAGAAATGCTACC}}}$CTCGAG$\underline{{\rm{GGTAGCATTTCTCAGTTCTG}}}$CTTTTTT |
shRUNX1-R | AAACAAAAAA$\underline{{\rm{GCAGAACTGAGAAATGCTACC}}}$CTCGAG$\underline{{\rm{GGTAGCATTTCTCAGTTCTGC}}}$ |
shNC-F | CACCG$\underline{{\rm{TTCTCCGAACGTGTCACGT}}}$CTCGAG$\underline{{\rm{ACGTGACACGTTCGGAGAA}}}$CTTTTTT |
shNC-R | AAACAAAAAAG$\underline{{\rm{TTCTCCGAACGTGTCACGT}}}$CTCGAG$\underline{{\rm{ACGTGACACGTTCGGAGAA}}}$C |
Fig. 1
Tissue expression profile of CYP3A29 gene A. The mRNA expression levels of CYP3A29 gene in various tissues; B. The expression levels of CYP3A29 protein in various tissues. 1-7 represent heart, liver, spleen, lung, kidney, small intestine, muscle.HPRT, GAPDH are internal reference genes"
Fig. 2
Segmental amplification of CYP3A29 promoter and vector double enzyme digestion verification A. Segmental amplification of the CYP3A29 gene promoter: 1-4.Amplified fragments of CYP32A29 gene promoter from-2 026-+62 bp, -1 526-+62 bp, -1 026-+62 bp and -528- +62 bp; B. Validation of a luciferase reporter vector for the CYP329 gene promoter by double enzymatic cleavage: 1-2. Validation of pRL-TK plasmid with double digestion; 3-4. pGL4.10-CYP3A29(-2 026- +62 bp) plasmid verified with double digestion; 5-6. pGL4.10-CYP3A29(-1 526- +62 bp) plasmid verified with double digestion; 7-8. pGL4.10-CYP3A29(-1 026- +62 bp) plasmid verified with double digestion; 9-10. pGL4.10-CYP3A29(-528- +62 bp) plasmid verified with double digestion"
Fig. 3
Identification of the core promoter of the CYP3A29 gene A. Validation of transfection efficiency of 293T and AML12 cells; B. Expression activity of different length promoters of CYP3A29 gene in 293T cells; C. Expression activity of different length promoters of CYP3A29 gene in AML12 cells"
Fig. 4
Analysis of the segmentation activity of the core promoter of the CYP3A29 gene A. Segmental amplification of the core promoter of CYP3A29 gene: 1-3.Amplified fragments of core promoter of CYP3A29 gene from-448-+62 bp, -289-+62 bp and-96-+62 bp. B. Validation of a luciferase reporter vector for the CYP329 gene promoter by double enzymatic cleavage: 1-2. pGL4.10-CYP3A29(-448-+62 bp) plasmid verified with double digestion; 3-4. pGL4.10-CYP3A29 (-289-+62 bp) plasmid verified with double digestion; 5-6. pGL4.10-CYP3A29(-96-+62 bp) plasmid verified with double digestion. C. Expression activity of different length of core promoter of CYP329 gene in AML12 cells"
Fig. 5
Expression levels of Spi1, Spib and RUNX1 transcription factors A. Expression levels of HPRT and Spi1 genes in AML12 cells; B. Expression levels of RUNX1 and Spib genes in AML12 cells.1-8 represent AML12 cell, heart, liver, spleen, lung, kidney, small intestine, muscle(mouse).HPRT is internal reference gene"
Fig. 7
Effect of RUNX1 interference on the core promoter activity of the CYP3A29 gene A. Efficiency assay of RUNX1 interference at the mRNA level; B. Efficiency assay of RUNX1 interference at the protein level; C. Effect of RUNX1 interference on the activity of the RUNX1 wild-type promoter; D. Effect of RUNX1 interference on the activity of the RUNX1 mutant promoter"
1 |
ZHANG L Y , XU X Q , BADAWY S , et al. A review: effects of macrolides on CYP450 enzymes[J]. Curr Drug Metab, 2020, 21 (12): 928- 937.
doi: 10.2174/1389200221666200817113920 |
2 |
LIN S Q , WEI J C , YANG B T . Bioremediation of organic pollutants by white rot fungal cytochrome P450: the role and mechanism of CYP450 in biodegradation[J]. Chemosphere, 2022, 301, 134776.
doi: 10.1016/j.chemosphere.2022.134776 |
3 |
LOOS N H C , BEIJNEN J H , SCHINKEL A H . The mechanism-based inactivation of CYP3A4 by ritonavir: what mechanism?[J]. Int J Mol Sci, 2022, 23 (17): 9866.
doi: 10.3390/ijms23179866 |
4 | LOLODI O , WANG Y M , WRIGHT W C , et al. Differential regulation of CYP3A4 and CYP3A5 and its implication in drug discovery[J]. Curr Drug Metab, 2017, 18 (12): 1095- 1105. |
5 |
ZANGER U M , SCHWAB M . Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation[J]. Pharmacol Ther, 2013, 138 (1): 103- 141.
doi: 10.1016/j.pharmthera.2012.12.007 |
6 |
WOODLAND C , HUANG T T , GRYZ E , et al. Expression, activity and regulation of CYP3A in human and rodent brain[J]. Drug Metab Rev, 2008, 40 (1): 149- 168.
doi: 10.1080/03602530701836712 |
7 |
ACHOUR B , BARBER J , ROSTAMI-HODJEGAN A . Cytochrome P450 Pig liver pie: determination of individual cytochrome P450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectrometry[J]. Drug Metab Dispos, 2011, 39 (11): 2130- 2134.
doi: 10.1124/dmd.111.040618 |
8 |
HE Y C , ZHOU X Q , LI X W , et al. Relationship between CYP3A29 and pregnane X receptor in landrace pigs: pig CYP3A29 has a similar mechanism of regulation to human CYP3A4[J]. Comp Biochem Physiol Part C Toxicol Pharmacol, 2018, 214, 9- 16.
doi: 10.1016/j.cbpc.2018.08.006 |
9 |
YAO M , DAI M H , LIU Z Y , et al. Comparison of the substrate kinetics of pig CYP3A29 with pig liver microsomes and human CYP3A4[J]. Biosci Rep, 2011, 31 (3): 211- 220.
doi: 10.1042/BSR20100084 |
10 |
SOUCEK P , ZUBER R , ANZENBACHEROVÁ E , et al. Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs[J]. BMC Pharmacol, 2001, 1 (1): 11.
doi: 10.1186/1471-2210-1-11 |
11 |
ANZENBACHEROVÁ E , BARANOVÁ J , ZUBER R , et al. Model systems based on experimental animals for studies on drug metabolism in man: (mini)pig cytochromes P450 3A29 and 2E1[J]. Basic Clin Pharmacol Toxicol, 2005, 96 (3): 244- 245.
doi: 10.1111/j.1742-7843.2005.pto960316.x |
12 |
LI X W , JIN X Q , ZHOU X L , et al. Pregnane X receptor is required for IFN-α-mediated CYP3A29 expression in pigs[J]. Biochem Biophys Res Commun, 2014, 445 (2): 469- 474.
doi: 10.1016/j.bbrc.2014.02.011 |
13 |
LI X W , HU X Z , JIN X E , et al. IFN-γ regulates cytochrome 3A29 through pregnane X receptor in pigs[J]. Xenobiotica, 2015, 45 (5): 373- 379.
doi: 10.3109/00498254.2014.985761 |
14 |
PASZTI-GERE E , MATIS G , FARKAS O , et al. The effects of intestinal LPS exposure on inflammatory responses in a porcine enterohepatic co-culture system[J]. Inflammation, 2014, 37 (1): 247- 260.
doi: 10.1007/s10753-013-9735-7 |
15 | YANG X Y , XING F , WANG L , et al. Effect of pregnane X receptor on CYP3A29 expression in porcine alveolar macrophages during Mycoplasma hyopneumoniae infection[J]. Animals (Basel), 2021, 11 (2): 349. |
16 |
方晓敏, 赵为民, 付言峰, 等. 猪支原体肺炎发生的品种敏感差异及分子基础[J]. 中国农业科学, 2015, 48 (14): 2839- 2847.
doi: 10.3864/j.issn.0578-1752.2015.14.015 |
FANG X M , ZHAO W M , FU Y F , et al. Difference in susceptibility to mycoplasma pneumonia among various pig breeds and its molecular genetic basis[J]. Scientia Agricultura Sinica, 2015, 48 (14): 2839- 2847.
doi: 10.3864/j.issn.0578-1752.2015.14.015 |
|
17 | JOVER R , BORT R , GÓMEZ-LECHÓN M J , et al. Down-regulation of human CYP3A4 by the inflammatory signal interleukin 6: molecular mechanism and transcription factors involved[J]. FASEB J, 2002, 16 (13): 1799- 1801. |
18 |
LE CARPENTIER E C , CANET E , MASSON D , et al. Impact of inflammation on midazolam metabolism in severe COVID-19 patients[J]. Clin Pharmacol Ther, 2022, 112 (5): 1033- 1039.
doi: 10.1002/cpt.2698 |
19 |
KASARLA S S , GARIKAPATI V , KUMAR Y , et al. Interplay of vitamin D and CYP3A4 polymorphisms in endocrine disorders and cancer[J]. Endocrinol Metab (Seoul), 2022, 37 (3): 392- 407.
doi: 10.3803/EnM.2021.1349 |
20 |
HUA R , QIAO G J , CHEN G S , et al. Single-cell RNA-sequencing analysis of colonic lamina propria immune cells reveals the key immune cell-related genes of ulcerative colitis[J]. J Inflamm Res, 2023, 16, 5171- 5188.
doi: 10.2147/JIR.S440076 |
21 |
SHEN W K , CHEN S Y , GAN Z Q , et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations[J]. Nucleic Acids Res, 2023, 51 (D1): D39- D45.
doi: 10.1093/nar/gkac907 |
22 |
PAN Z Y , YAO Y L , YIN H W , et al. Pig genome functional annotation enhances the biological interpretation of complex traits and human disease[J]. Nat Commun, 2021, 12 (1): 5848.
doi: 10.1038/s41467-021-26153-7 |
23 |
ZHAO Y X , HOU Y , XU Y Y , et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome[J]. Nat Commun, 2021, 12 (1): 2217.
doi: 10.1038/s41467-021-22448-x |
24 |
LI J J , XIANG Y , ZHANG L , et al. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome[J]. BMC Biol, 2022, 20 (1): 136.
doi: 10.1186/s12915-022-01322-2 |
25 | QIN W P , PAN J P , QIN Y W , et al. Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter[J]. Biochem Biophys Res Commun, 2014, 450 (2): 979- 983. |
26 | ZHANG Y , ZHU F , TENG J , et al. Effects of salinity stress on methylation of the liver genome and complement gene in large yellow croaker (Larimichthys crocea)[J]. Fish Shellfish Immunol, 2022, 129, 207- 220. |
27 | ZHU M J , LV J H , WANG W , et al. CMPK2 is a host restriction factor that inhibits infection of multiple coronaviruses in a cell-intrinsic manner[J]. PLoS Biol, 2023, 21 (3): e3002039. |
28 | WEI F X , GU Y , HE L Z , et al. HSD17B6 delays type 2 diabetes development via inhibiting SREBP activation[J]. Metabolism, 2023, 145, 155631. |
29 | ZHU H F , ZHANG R Z , YI L , et al. UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation[J]. J Med Virol, 2022, 94 (9): 4490- 4501. |
30 | YANG M L , CAI W S , LIN Z H , et al. Intermittent hypoxia promotes TAM-induced glycolysis in laryngeal cancer cells via regulation of HK1 expression through activation of ZBTB10[J]. Int J Mol Sci, 2023, 24 (19): 14808. |
31 | CHENG M Y , KANYEMA M M , SUN Y , et al. African swine fever virus L83L negatively regulates the cGAS-STING-mediated IFN-Ⅰ pathway by recruiting tollip to promote STING autophagic degradation[J]. J Virol, 2023, 97 (2): e01923-22. |
32 | GUO X , ZHANG Z Y , LIN C H , et al. A/(H1N1) pdm09 NS1 promotes viral replication by enhancing autophagy through hijacking the IAV negative regulatory factor LRPPRC[J]. Autophagy, 2023, 19 (5): 1533- 1550. |
33 | WU Y K , CHEN W J , MIAO H L , et al. SIRT7 promotes the proliferation and migration of anaplastic thyroid cancer cells by regulating the desuccinylation of KIF23[J]. BMC Cancer, 2024, 24 (1): 210. |
34 | ZHANG G H , LI D Y , TU C F , et al. Loss-of-function missense variant of AKAP4 induced male infertility through reduced interaction with QRICH2 during sperm flagella development[J]. Hum Mol Genet, 2021, 31 (2): 219- 231. |
35 | CHEN Y Z , HE Y Y , LIU S B . RUNX1-regulated signaling pathways in ovarian cancer[J]. Biomedicines, 2023, 11 (9): 2357. |
36 | TANG X J , ZHONG L C , TIAN X , et al. RUNX1 promotes mitophagy and alleviates pulmonary inflammation during acute lung injury[J]. Sig Transduct Target Ther, 2023, 8 (1): 288. |
37 | ARIFFIN N S . RUNX1 as a novel molecular target for breast cancer[J]. Clin Breast Cancer, 2022, 22 (6): 499- 506. |
38 | HONG D L , FRITZ A J , GORDON J A , et al. RUNX1-dependent mechanisms in biological control and dysregulation in cancer[J]. J Cell Physiol, 2019, 234 (6): 8597- 8609. |
39 | REED-INDERBITZIN E , MORENO-MIRALLES I , VANDEN-EYNDEN S K , et al. RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription[J]. Oncogene, 2006, 25 (42): 5777- 5786. |
40 | TELFER J C , HEDBLOM E E , ANDERSON M K , et al. Localization of the domains in runx transcription factors required for the repression of CD4 in thymocytes[J]. J Immunol, 2004, 172 (7): 4359- 4370. |
[1] | LIU Aijun, ZHANG Chuanliang, HUANG Xiaobing, ZHOU Caiqin. Research Progress on the Life Cycle of Porcine Reproductive and Respiratory Syndrome Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1027-1041. |
[2] | WU Peiling, LI Yixuan, WANG Haojie, LI Yafei, LIU Shaomeng, LIU Qingyun, WANG Xiangru. Research Progress of Porcine Epidemic Diarrhea Vaccine for Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1042-1058. |
[3] | YU Xinya, HE Haijian, WANG Lei, NI Yuchen, DU Jing, ZHOU Yingshan, DONG Wanyu, WANG Xiaodu. Effect of lncRNA 18850 on Porcine Epidemic Diarrhea Virus Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1366-1375. |
[4] | FAN Jie, TAI Yirun, ZHU Yanli, CHEN Zhixiong, HU Qiaoyun, CHEN Zhi, LIU Tiantian, LI Xin, FAN Zhongxin, GE Meng. Investigation of Porcine Circovirus 2 Infection Status and Analysis of Genetic Evolution in Hunan Province in Recent Years [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1376-1385. |
[5] | ZHANG Dongxuan, WANG Zhihao, QIAO Yan, ZHAO Xiaoxiao, FAN Songjie, ZHANG Chao. Prokaryotic Expression of S1 Protein in Porcine Epidemic Diarrhea Virus and Screening of Its Aptamers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 839-850. |
[6] | SHAO Yongheng, NI Minting, GAO Mengling, TANG Jiao, ZHANG Gengxin, LIN Shengyu, LIU Guangliang, CHEN Jianing, WANG Wenhui. Prokaryotic Expression of VP1 Protein to Porcine Teschovirus Type 5 and the Establishment of an Indirect ELISA Detection Method [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 883-889. |
[7] | SUN Yawen, CHEN Siying, LI Kang, LENG Xuan, WANG Dong, PANG Yunwei. Strategies for Alleviating Cryoinjury of Porcine Vitrified-Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 36-44. |
[8] | CAI Yunfeng, LI Hong, HUANG Xiaoming, HE Qing, DING Zhenyu, YU Wanting, LUO Shile, CHEN Fangzhi, WANG Naidong, YANG Yi, ZHAN Yang. Study on the Presentation Strategy and Immunogenicity of Porcine Parvovirus Epitope Inserted by 3-fold Axes Region on the Surface of Porcine Circovirus Type 2 Virus-like Particles [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 307-318. |
[9] | Nanzhu CHEN, Junliang LI, Dawei YU, Xinyi ZHOU, Jing WANG, Huiying ZOU, Weihua DU. Analysis of Imprinted Expression and DNA Methylation Status of the Porcine MKRN3 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3853-3863. |
[10] | Liguo GAO, Hanqin SHEN, Yiquan CHEN, Sheng CHEN, Wencheng LIN, Feng CHEN. Prokaryotic Expression of Recombinant VP6* Protein of Porcine Rotavirus and Establishment of Indirect ELISA Detection Method [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4021-4028. |
[11] | Ning PENG, Yaxu LIANG, Fei LONG, Dongming YU, Xiang ZHONG. Inhibitory Effect of Resveratrol on Rotavirus-infected Porcine Intestinal Epithelial Cells IPEC-J2 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4213-4225. |
[12] | Zhentao XIA, Nan WANG, Wanjie WANG, Qilü ZHOU, Lei HUANG, Yulian MU. Characteristics Analysis of TGEV Infection Mediated by IPEC-J2 with Knockout of pAPN Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3395-3407. |
[13] | Yi WANG, Juan GAO, Yuemin HU, Yuefei YANG, Bojun FAN, Huiming JU. Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3408-3417. |
[14] | Lindan LÜ, Hao MU, Xia HU, Mingni LIU, Shaomei LI, Xing LI, Zhenhui SONG, Liu YANG. Establishment and Preliminary Application of RAA Assay for the Detection of Porcine Transmissible Gastroenteritis Virus based on S Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3590-3599. |
[15] | Weizhe LIU, Chenggang LUO, Rong YUAN, Yijie LIAO, Yimin WEN, Ying SUN, Enbo YU, Sanjie CAO, Xiaobo HUANG. Isolation and Identification of a Highly Pathogenic Strain of Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3049-3063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||