Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 63-73.doi: 10.11843/j.issn.0366-6964.2025.01.006
• Review • Previous Articles Next Articles
CHANG Xuan(), WEI Bingni, ZHANG Xiaoli, ZHAO Zhongquan, CHEN Juncai*(
)
Received:
2024-03-06
Online:
2025-01-23
Published:
2025-01-18
Contact:
CHEN Juncai
E-mail:cx991103823@163.com;juncaichen@swu.edu.cn
CLC Number:
CHANG Xuan, WEI Bingni, ZHANG Xiaoli, ZHAO Zhongquan, CHEN Juncai. Research Progress of Gastrointestinal Symbiotic Fungi in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 63-73.
Table 1
Common symbiotic fungi in gastrointestinal tract of livestock and poultry[6-9, 11-16]"
物种 Species | 品种 Variety | 日龄 Days of age | 健康状态 Health condition | 实验处理 Experimental treatment | 样品来源 Sample source | 主要优势真菌属 Main dominant symbiotic fungi at genus level | 其他优势真菌属 Other dominant symbiotic fungi at genus level | 参考文献 References |
猪 Swine | 金华猪 | 270日龄 | 健康 | 高瘦肉率 | 回肠食糜 | Naganishia | Clavaria、Rhizopus | [ |
结肠食糜 | Xeromyces | Xerochrysium、Verticllium、Wickerhamomyces、Wallemia、 | ||||||
健康 | 低瘦肉率 | 回肠食糜 | Kazachstania | Gloeotinia、Saccharomyces | ||||
结肠食糜 | Clavaria | Kazachstania、Aspergillus、Verticllium | ||||||
杂交杜洛克 | 21日龄 | 健康 | — | 结肠食糜 | Scheffersomyces、Kazachstania | Aspergillus、Dipodscus | [ | |
藏猪 | 21日龄 | 健康 | — | 粪便 | Derxomyces、Lecanicillium、Aspergillus | Simplicillium、Cutaneotrichosporon | [ | |
腹泻 | — | 粪便 | Lecanicillium | |||||
健康 | 抗生素 | 粪便 | Derxomyces、Lecanicillium | |||||
藏猪 | 365日龄 | 健康 | — | 粪便 | Russula、Nephroma | Candida、Loreleia | ||
成华猪 | 200~210日龄 | 健康 | — | 粪便 | Loreleia、Russula | Nephroma、Candida、Metschnikowia | [ | |
约克夏猪 | 140~150日龄 | 健康 | — | 粪便 | Loreleia、Russula | Candida、Metschnikowia | ||
羊 Sheep & Goat | 湖羊 | 0~3日龄 | 健康 | — | 瘤胃液 | Debaryomyces | Wallemia、Aspergillus、Microascus | [ |
3~45日龄 | 瘤胃液 | Aspergillus | Microascus、Wallemia | |||||
45~120日龄 | 瘤胃液 | Saccharomyces | Aspergillus、Wallemia | |||||
白绒山羊 | 10日龄 | 健康 | — | 瘤胃液 | Mortierela | Sporormiella、Aspergillus | [ | |
150日龄 | 粪便 | Acaulium | Aspergillus、Kernia | |||||
健康 | — | 瘤胃液 | Saccharomyces | Ascochyta、Cladosporium | ||||
粪便 | Cladosporium | Penicilium | ||||||
牛 Cattle | 杂交荷斯坦 | 7~63日龄 | 健康 | — | 瘤胃液 | SK3、Caecomyces | Orpinomyces、Piromyces、Neocallimastixs | [ |
牦牛 | 犊牛 | 腹泻 | — | 粪便 | Podospora、Sporormiella | Ascobolus、Preussia、Plenodomus、Phoma | [ | |
成年 | 腹泻 | — | 粪便 | Ustilago | ||||
健康 | — | 粪便 | Sporormiella、Ustilago | |||||
家禽 Poultry | 科宝肉鸡 | 0~42日龄 | 健康 | — | 嗉囊、十二指肠至结肠食糜 | Gibberella | Aspergillus、Candida | [ |
罗斯肉鸡 | 0~62日龄 | 健康 | — | 盲肠食糜 | Aspergillus、Penicillium | Verticillium、Sporidiobolus | [ |
1 |
FIERS W D , GAO I H , ILIEV I D . Gut mycobiota under scrutiny: fungal symbionts or environmental transients?[J]. Curr Opin Microbiol, 2019, 50, 79- 86.
doi: 10.1016/j.mib.2019.09.010 |
2 | RICHARD M L , SOKOL H . The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases[J]. Nat Rev Gastroenterol Hepatol, 2019, 16 (6): 331- 345. |
3 |
WU X Y , XIA Y Y , HE F , et al. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities[J]. Microbiome, 2021, 9 (1): 60.
doi: 10.1186/s40168-021-01024-x |
4 | AUCHTUNG T A , FOFANOVA T Y , STEWART C J , et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi[J]. MSphere, 2018, 3 (2): e00092- 18. |
5 |
PECQUET S , GUILLAUMIN D , TANCREDE C , et al. Kinetics of saccharomyces cerevisiae elimination from the intestines of human volunteers and effect of this yeast on resistance to microbial colonization in gnotobiotic mice[J]. Appl Environ Microbiol, 1991, 57 (10): 3049- 3051.
doi: 10.1128/aem.57.10.3049-3051.1991 |
6 |
LI J Y , CHEN D W , YU B , et al. The fungal community and its interaction with the concentration of short-chain fatty acids in the faeces of Chenghua, Yorkshire and Tibetan pigs[J]. Microb Biotechnol, 2020, 13 (2): 509- 521.
doi: 10.1111/1751-7915.13507 |
7 | 李景上, 章啸君, 陈胜昌, 等. 金华猪回肠、结肠真菌结构及其与体脂沉积的相关性研究[J]. 动物营养学报, 2022, 34 (1): 131- 140. |
LI J S , ZHANG X J , CHEN S C , et al. Study on fungi structure in ileum and colon of Jinhua pigs and its correlation with body fat deposition[J]. Chinese Journal of Animal Nutrition, 2022, 34 (1): 131- 140. | |
8 | LUO Y H , LI J Y , ZHOU H , et al. The nutritional significance of intestinal fungi: alteration of dietary carbohydrate composition triggers colonic fungal community shifts in a pig model[J]. Appl Environ Microbiol, 2021, 87 (10): e00038- 21. |
9 |
KONG Q H , LIU S Z , LI A Y , et al. Characterization of fungal microbial diversity in healthy and diarrheal Tibetan piglets[J]. BMC Microbiol, 2021, 21 (1): 204.
doi: 10.1186/s12866-021-02242-x |
10 |
HU J , CHEN J W , HOU Q L , et al. Core-predominant gut fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine desuccinylation in pigs[J]. Microbiome, 2023, 11 (1): 31.
doi: 10.1186/s40168-023-01468-3 |
11 |
YIN X J , JI S K , DUAN C H , et al. Dynamic change of fungal community in the gastrointestinal tract of growing lambs[J]. J Integr Agric, 2022, 21 (11): 3314- 3328.
doi: 10.1016/j.jia.2022.08.092 |
12 |
娜梅拉, 李科南, 杜海东, 等. 不同日龄内蒙古白绒山羊瘤胃及粪便真菌多样性差异研究[J]. 畜牧兽医学报, 2024, 55 (8): 3526- 3540.
doi: 10.11843/j.issn.0366-6964.2024.08.025 |
NA M L , LI K N , DU H D , et al. Study on the differences of fungal diversity in rumen and feces of Inner Mongolia cashmere goats at different ages[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3526- 3540.
doi: 10.11843/j.issn.0366-6964.2024.08.025 |
|
13 |
DIAS J , MARCONDES M I , NORONHA M F , et al. Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves[J]. Front Microbiol, 2017, 8, 1553.
doi: 10.3389/fmicb.2017.01553 |
14 |
LI K , MEHMOOD K , ZHANG H , et al. Characterization of fungus microbial diversity in healthy and diarrheal yaks in Gannan region of Tibet autonomous prefecture[J]. Acta Trop, 2018, 182, 14- 26.
doi: 10.1016/j.actatropica.2018.02.017 |
15 |
ROBINSON K , YANG Q , STEWART S , et al. Biogeography, succession, and origin of the chicken intestinal mycobiome[J]. Microbiome, 2022, 10 (1): 55.
doi: 10.1186/s40168-022-01252-9 |
16 |
BYRD J A , CALDWELL D Y , NISBET D J . The identification of fungi collected from the ceca of commercial poultry[J]. Poult Sci, 2017, 96 (7): 2360- 2365.
doi: 10.3382/ps/pew486 |
17 |
HAWKSWORTH D L , ROSSMAN A Y . Where are all the undescribed fungi?[J]. Phytopathology, 1997, 87 (9): 888- 891.
doi: 10.1094/PHYTO.1997.87.9.888 |
18 |
HAMAD I , RAOULT D , BITTAR F . Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods[J]. Parasite Immunol, 2016, 38 (1): 12- 36.
doi: 10.1111/pim.12284 |
19 |
SCHOCH C L , SEIFERT K A , HUHNDORF S , et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi[J]. Proc Natl Acad Sci U S A, 2012, 109 (16): 6241- 6246.
doi: 10.1073/pnas.1117018109 |
20 | SCHOCH C L , SEIFERT K A . Reply to Kiss: internal transcribed spacer (ITS) remains the best candidate as a universal DNA barcode marker for Fungi despite imperfections[J]. Proc Natl Acad Sci U S A, 2012, 109 (27): E1812. |
21 |
NILSSON R H , ANSLAN S , BAHRAM M , et al. Mycobiome diversity: high-throughput sequencing and identification of fungi[J]. Nat Rev Microbiol, 2019, 17 (2): 95- 109.
doi: 10.1038/s41579-018-0116-y |
22 |
LIMON J J , SKALSKI J H , UNDERHILL D M . Commensal fungi in health and disease[J]. Cell Host Microbe, 2017, 22 (2): 156- 165.
doi: 10.1016/j.chom.2017.07.002 |
23 | 周欣, 李盟, 马紫英, 等. 运用可培养组技术开展难培养真菌的分离和鉴定[J]. 微生物组实验手册, 2021, Bio-101, e2003703. |
ZHOU X , LI M , MA Z Y , et al. Applying culturomics approach for the isolation and identification of previously uncultured fungi[J]. Microbiome Protocols eBook, 2021, Bio-101, e2003703. | |
24 |
HAMAD I , RANQUE S , AZHAR E I , et al. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota[J]. Sci Rep, 2017, 7 (1): 16788.
doi: 10.1038/s41598-017-17132-4 |
25 |
LI M , RAZA M , SONG S , et al. Application of culturomics in fungal isolation from mangrove sediments[J]. Microbiome, 2023, 11 (1): 272.
doi: 10.1186/s40168-023-01708-6 |
26 |
PEREIRA A C , CUNHA M V . An effective culturomics approach to study the gut microbiota of mammals[J]. Res Microbiol, 2020, 171 (8): 290- 300.
doi: 10.1016/j.resmic.2020.09.001 |
27 |
CHEN X S , AN M , ZHANG W Q , et al. Integrated bacteria-fungi diversity analysis reveals the gut microbial changes in buffalo with mastitis[J]. Front Vet Sci, 2022, 9, 918541.
doi: 10.3389/fvets.2022.918541 |
28 |
ELOLIMY A , ROSA F , TRIPP P , et al. Bacterial and fungal adaptations in cecum and distal colon of piglets fed with dairy-based milk formula in comparison with human milk[J]. Front Microbiol, 2022, 13, 801854.
doi: 10.3389/fmicb.2022.801854 |
29 |
WANG T , LIU J H , LUO Y H , et al. Combined effects of host genetics and diet on porcine intestinal fungi and their pathogenic genes[J]. Front Microbiol, 2023, 14, 1192288.
doi: 10.3389/fmicb.2023.1192288 |
30 |
ZHANG D Y , LIU H , WANG S X , et al. Wheat bran fermented by Lactobacillus regulated the bacteria-fungi composition and reduced fecal heavy metals concentrations in growing pigs[J]. Sci Total Environ, 2023, 858, 159828.
doi: 10.1016/j.scitotenv.2022.159828 |
31 | KUMAR S , INDUGU N , VECCHIARELLI B , et al. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows[J]. Front Microbiol, 2015, 6, 781. |
32 | 李娜, 张洁, 郭婷婷, 等. 基于内转录间隔区测序分析不同饲养方式对滩羊羔羊瘤胃真菌组成及多样性的影响[J]. 动物营养学报, 2020, 32 (2): 784- 794. |
LI N , ZHANG J , GUO T T , et al. Effects of different feeding methods on composition and diversity of rumen fungi in tan sheep based on interstitial region sequencing[J]. Chinese Journal of Animal Nutrition, 2020, 32 (2): 784- 794. | |
33 |
FLIEGEROVA K O , PODMIRSEG S M , VINZELJ J , et al. The effect of a high-grain diet on the rumen microbiome of goats with a special focus on anaerobic fungi[J]. Microorganisms, 2021, 9 (1): 157.
doi: 10.3390/microorganisms9010157 |
34 |
LI M H , MENG J X , WANG W , et al. Dynamic description of temporal changes of gut microbiota in broilers[J]. Poult Sci, 2022, 101 (9): 102037.
doi: 10.1016/j.psj.2022.102037 |
35 |
YANG S L , ZHANG G R , DENG M Y , et al. Exploring yak (bos grunniens) rumen bacterial and fungal communities from 5 days after birth to adulthood[J]. Res Sq, 2022,
doi: 10.21203/rs.3.rs-1232699/v1 |
36 |
AKIN D E , BORNEMAN W S . Role of rumen fungi in fiber degradation[J]. J Dairy Sci, 1990, 73 (10): 3023- 3032.
doi: 10.3168/jds.S0022-0302(90)78989-8 |
37 | 李蒋伟, 周力, 侯生珍, 等. 日粮精粗比对育肥藏羊肠道真菌多样性的影响[J]. 西南农业学报, 2021, 34 (12): 2784- 2789. |
LI J W , ZHOU L , HOU S Z , et al. Effects of dietary concentrate to roughage ratio on intestinal fungal diversity in Tibetan sheep[J]. Southwest China Journal of Agricultural Sciences, 2021, 34 (12): 2784- 2789. | |
38 | GHETAS A M , SEDEEK D M , FEDAWY H S , et al. Detection of intestinal fungi in chickens naturally infected with infectious bursal disease[J]. Adv Anim Vet Sci, 2022, 10 (3): 514- 520. |
39 |
YANG Q , LIU J , ROBINSON K J , et al. Perturbations of the ileal mycobiota by necrotic enteritis in broiler chickens[J]. J Anim Sci Biotechnol, 2021, 12 (1): 107.
doi: 10.1186/s40104-021-00628-5 |
40 |
GUTIERREZ M W , ARRIETA M C . The intestinal mycobiome as a determinant of host immune and metabolic health[J]. Curr Opin Microbiol, 2021, 62, 8- 13.
doi: 10.1016/j.mib.2021.04.004 |
41 |
CARBONETTO B , NIDELET T , GUEZENEC S , et al. Interactions between Kazachstania humilis yeast species and lactic acid bacteria in sourdough[J]. Microorganisms, 2020, 8 (2): 240.
doi: 10.3390/microorganisms8020240 |
42 |
HAGMAN A , SÄLL T , COMPAGNO C , et al. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication[J]. PLoS One, 2013, 8 (7): e68734.
doi: 10.1371/journal.pone.0068734 |
43 |
ZHANG Z T , GUO Q J , WANG J , et al. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets[J]. Food Funct, 2023, 14 (8): 3463- 3474.
doi: 10.1039/D2FO03695A |
44 |
SUMMERS K L , FOSTER FREY J , ARFKEN A M . Characterization of Kazachstania slooffiae, a proposed commensal in the porcine gut[J]. J Fungi (Basel), 2021, 7 (2): 146.
doi: 10.3390/jof7020146 |
45 |
MORAÏS S , MIZRAHI I . Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem[J]. FEMS Microbiol Rev, 2019, 43 (4): 362- 379.
doi: 10.1093/femsre/fuz007 |
46 |
DAGAR S S , KUMAR S , MUDGIL P , et al. D1/D2 domain of large-subunit ribosomal DNA for differentiation of orpinomyces spp[J]. Appl Environ Microbiol, 2011, 77 (18): 6722- 6725.
doi: 10.1128/AEM.05441-11 |
47 |
DAGAR S S , SINGH N , GOEL N , et al. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro[J]. Benef Microbes, 2015, 6 (3): 353- 360.
doi: 10.3920/BM2014.0071 |
48 |
GRUNINGER R J , PUNIYA A K , CALLAGHAN T M , et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential[J]. FEMS Microbiol Ecol, 2014, 90 (1): 1- 17.
doi: 10.1111/1574-6941.12383 |
49 |
DE ALMEIDA P N M , DUARTE E R , ABRÃO F O , et al. Aerobic fungi in the rumen fluid from dairy cattle fed different sources of forage[J]. Rev Bras Zootec, 2012, 41 (11): 2336- 2342.
doi: 10.1590/S1516-35982012001100006 |
50 |
GORDON G L R , PHILLIPS M W . The role of anaerobic gut fungi in ruminants[J]. Nutr Res Rev, 1998, 11 (1): 133- 168.
doi: 10.1079/NRR19980009 |
51 | JOBLIN K N, NAYLOR G E, ODONGO N E, et al. Ruminal fungi for increasing forage intake and animal productivity[C]//Proceedings of International Symposium on Sustainable Improvement of Animal Production and Health. Vienna: IAEA, 2010: 129-136. |
52 |
DEY A , SEHGAL J P , PUNIYA A K , et al. Influence of an anaerobic fungal culture (orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves[J]. Asian-Australas J Anim Sci, 2004, 17 (6): 820- 824.
doi: 10.5713/ajas.2004.820 |
53 |
PAUL S S , KAMRA D N , SASTRY V R B , et al. Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocamelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients[J]. Anim Feed Sci Technol, 2004, 115 (1-2): 143- 157.
doi: 10.1016/j.anifeedsci.2004.01.010 |
54 | SIROHI S K , CHOUDHURY P K , DAGAR S S , et al. Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle[J]. Ann Microbiol, 2013, 63 (3): 1187- 1194. |
55 | DOLLHOFER V , DANDIKAS V , DORN-IN S , et al. Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis[J]. Bioresour Technol, 2018, 264, 219- 227. |
56 | KOH A Y . Murine models of candida gastrointestinal colonization and dissemination[J]. Eukaryot Cell, 2013, 12 (11): 1416- 1422. |
57 | HOEFLINGER J L , COLEMAN D A , OH S H , et al. A piglet model for studying Candida albicans colonization of the human oro-gastrointestinal tract[J]. FEMS Microbiol Lett, 2014, 357 (1): 10- 15. |
58 | TSO G H W , REALES-CALDERON J A , TAN A S M , et al. Experimental evolution of a fungal pathogen into a gut symbiont[J]. Science, 2018, 362 (6414): 589- 595. |
59 | YEUNG F. The role of commensal fungi in immune development and disease susceptibility[D]. New York: New York University, 2021. |
60 | ZHANG Z D , LI J J , ZHENG W C , et al. Peripheral lymphoid volume expansion and maintenance are controlled by gut microbiota via RALDH+ dendritic cells[J]. Immunity, 2016, 44 (2): 330- 342. |
61 | RAMAYO-CALDAS Y , PRENAFETA-BOLDÚ F , ZINGARETTI L M , et al. Gut eukaryotic communities in pigs: diversity, composition and host genetics contribution[J]. Anim Microbiome, 2020, 2 (1): 18. |
62 | EVERARD A , MATAMOROS S , GEURTS L , et al. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice[J]. MBio, 2014, 5 (3): e01011- 14. |
63 | MAR RODRÍGUEZ M , PÉREZ D , JAVIER CHAVES F , et al. Obesity changes the human gut mycobiome[J]. Sci Rep, 2015, 5, 14600. |
64 | BOOTS B , LILLIS L , CLIPSON N , et al. Responses of anaerobic rumen fungal diversity (phylum neocallimastigomycota) to changes in bovine diet[J]. J Appl Microbiol, 2013, 114 (3): 626- 635. |
[1] | WANG Beibei, WU Shugeng, ZHANG Haihua, ZHANG Haijun, HAO Erying, QIU Kai. Effects of Dietary Soybean Isoflavone Supplementation on Production of Laying Hens in Late Laying Period [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 295-306. |
[2] | LI Wei, WU Xilong, ZHAO Xingrui, XU Lanjiao, YANG Xiaobin, SONG Xiaozhen. Effects of Chinese Medicine Jianpisiwei Formulas on Growth Performance, Rumen Fermentation and Microbiota Composition of Weaned Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 466-478. |
[3] | Lirui ZHANG, Beiyu ZHANG, Yujuan LI, Yongxu LIU, Hong ZHAO, Fuchang LI, Lei LIU. Effects of Dietary Methionine Level on Wool Production Performance and Hair Follicle Development of Angora Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3024-3031. |
[4] | Xiaoxu WANG, Yanqing CHEN, Jiaqi ZHANG, Ye WANG, Rui WANG, Hanlin YU, Kaiqi YANG, Jun BAO, Runxiang ZHANG. Effect of Foot Pad Dermatitis on Production Performance, Egg Quality, Behavioral Responses, and Immune Levels of Laying Hens in Furnished Cages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2680-2691. |
[5] | CHEN Fangfang, LI Zhonghua, ZHU Zhiwei, LI Jinchun, LIU Cuiyan. Recent Advances in Multifunctional Research of Invariant Chain [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1824-1833. |
[6] | LI Yujuan, ZHANG Yuanming, ZHANG Beiyu, LI Fuchang, LIU Lei. Effects of Dietary Lysine Supplementation on Hair Production Performance and Hair Follicle Development of Angora Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2013-2019. |
[7] | YAN Weidong, WANG Ping, JIANG Mingjun, ZHAO Jingpeng, WANG Xiaojuan, LIN Hai, JIAO Hongchao. Effects of Supplementing Phytase to Cu Decrement Diet on Production Performance and Cu, Zn Excretion of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1535-1544. |
[8] | WANG Lan, HE Mingyu, ZHANG Min, DING Juntao. MicroRNAs Regulate Antiviral Immunity and Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 463-472. |
[9] | ZHOU Fuzhen, ZHOU Bu, DAI Xu, WANG Haiyang, GUO Mengling, LIANG Yan, YANG Zhangping, MAO Yongjiang. Analysis on the Change of BCS in Early Lactation and Its Effects on Production Performance and Productive Lifespan in Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2955-2969. |
[10] | LIU Qian, LI Dapeng, ZHANG Hong, LIU Qin, WANG Xuezhi, LI Jianxi, YANG Xiaopu, ZHANG Jingyan. Immunoregulation Effect of Astragalus Polysaccharide on Lipopolysaccharide Injuryed HD11 Cells and the Effect on TLRs mRNA Expression [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3251-3261. |
[11] | GUO Wenliang, XU Yuanqing, JIN Xiao, SHI Binlin. Moderating Role of Heat Shock Protein Under Inflammatory Response and Oxidative Stress Caused by Cold Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1668-1677. |
[12] | TANG Xiujun, FAN Yanfeng, JIA Xiaoxu, GE Qinglian, LU Junxian, ZHOU Qian, CHEN Dawei, GAO Yushi. Studies on Mitochondrial Haplotype and Genetic Origins of Different Types Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3748-3758. |
[13] | CHANG Ling, HE Yechun, LI Zheng, WANG Qizhi, ZHAO Aihua, SONG Zehe, ZHANG Haihan, HE Xi. Effects of Lysolecithin on Growth and Development of Liangfenghua Chickens Fed with Energy-reduced Diet [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3892-3906. |
[14] | WANG Zhengrong, MA Xun, ZHANG Yanyan, MENG Jimeng, BO Xinwen. Analysis of Genes Related to Immune Interaction between Protoscolices of Echinococcus granulosus and Macrophage RAW264.7 by Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3975-3988. |
[15] | LI Hao, LIU Hui, ZHANG Hongxing, XIE Yuanhong, XIONG Lixia, LIAN Zhengxing. Effects of Lactobacillus paracasei KL1 Preparation on Production Performance, Egg Quality and Cholesterol Content in Eggs of Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2213-2222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||