Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 115-125.doi: 10.11843/j.issn.0366-6964.2025.01.011
• Review • Previous Articles Next Articles
HE Haiyang(), MA Baohua*(
), PENG Sha*(
)
Received:
2024-02-26
Online:
2025-01-23
Published:
2025-01-18
Contact:
MA Baohua, PENG Sha
E-mail:hhy1483457965@163.com;mabh@nwsuaf.edu.cn;pengshacxh@nwsuaf.edu.cn
CLC Number:
HE Haiyang, MA Baohua, PENG Sha. Research Progress on the Role and Mechanism of Mesenchymal Stem Cell-derived Exosomes in Animal Acute Renal Injury[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 115-125.
Fig. 1
Anti-apoptotic effect of MSC exos Bcl-2. B lymphoblastoma-2 gene; Bax. Bcl-2 is a protein associated with X; Akt Threonine protein kinase; GSDMD. gasderimin D; RIPK. Receptor interacting protein kinase; MLKL. Mixed lineage kinase-like domain-like pseudokinases; CDK1. Cyclin-dependent kinase 1;↑. Increase, rise; ↓. Decrease, decline"
Fig. 2
The promoting effect of MSC-exos on kidney regeneration VEGF. Vascular endothelial growth factor; TECs. Renal tubular epithelial cells; HGF. Hepatocyte growth factor; Sox-9. High mobility frame-9 protein associated with sex determination region Y; IGF-1. Insulin-like growth factor-1;ERK1/2. Extracellular regulatory protein kinase 1/2"
1 |
KELLUM J A , ROMAGNANI P , ASHUNTANTANG G , et al. Acute kidney injury[J]. Nat Rev Dis Primers, 2021, 7 (1): 52.
doi: 10.1038/s41572-021-00284-z |
2 |
HUANG Y L , YANG L N . Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases[J]. Stem Cell Res Ther, 2021, 12 (1): 219.
doi: 10.1186/s13287-021-02289-7 |
3 |
XUNIAN Z , KALLURI R . Biology and therapeutic potential of mesenchymal stem cell-derived exosomes[J]. Cancer Sci, 2020, 111 (9): 3100- 3110.
doi: 10.1111/cas.14563 |
4 |
DAD H A , GU T W , ZHU A Q , et al. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms[J]. Mol Ther, 2021, 29 (1): 13- 31.
doi: 10.1016/j.ymthe.2020.11.030 |
5 |
ASKENASE P W . Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are 'The Elephant in the Room'[J]. RNA Biol, 2021, 18 (11): 2038- 2053.
doi: 10.1080/15476286.2021.1885189 |
6 | SPADA S . Study of microRNAs carried by exosomes[J]. Methods Cell Biol, 2021, 165, 187- 197. |
7 |
PEIRED A J , SISTI A , ROMAGNANI P . Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence[J]. Stem Cells Int, 2016, 2016, 4798639.
doi: 10.1155/2016/4798639 |
8 |
ELAHI F M , FARWELL D G , NOLTA J A , et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells[J]. Stem Cells, 2020, 38 (1): 15- 21.
doi: 10.1002/stem.3061 |
9 |
JOO H S , SUH J H , LEE H J , et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent[J]. Int J Mol Sci, 2020, 21 (3): 727.
doi: 10.3390/ijms21030727 |
10 |
ZHANG X Y , WANG J , ZHANG J , et al. Exosomes highlight future directions in the treatment of acute kidney injury[J]. Int J Mol Sci, 2023, 24 (21): 15568.
doi: 10.3390/ijms242115568 |
11 |
COLLINO F , BRUNO S , INCARNATO D , et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs[J]. J Am Soc Nephrol, 2015, 26 (10): 2349- 2360.
doi: 10.1681/ASN.2014070710 |
12 |
BONAVIA A , SINGBARTL K . A review of the role of immune cells in acute kidney injury[J]. Pediatr Nephrol, 2018, 33 (10): 1629- 1639.
doi: 10.1007/s00467-017-3774-5 |
13 |
TAMMARO A , KERS J , SCANTLEBERY A M L , et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration[J]. Front Immunol, 2020, 11, 1346.
doi: 10.3389/fimmu.2020.01346 |
14 |
LIU Z W , DONG Z . A cross talk between HIF and NF-κB in AKI[J]. Am J Physiol Renal Physiol, 2021, 321 (3): F255- F256.
doi: 10.1152/ajprenal.00256.2021 |
15 |
AMARAL PEDROSO L , NOBRE V , DIAS CARNEIRO DE ALMEIDA C , et al. Acute kidney injury biomarkers in the critically ill[J]. Clin Chim Acta, 2020, 508, 170- 178.
doi: 10.1016/j.cca.2020.05.024 |
16 |
VON VIETINGHOFF S , KURTS C . Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease[J]. Cell Tissue Res, 2021, 385 (2): 335- 344.
doi: 10.1007/s00441-021-03473-0 |
17 |
ZOU X Y , ZHANG G Y , CHENG Z L , et al. Microvesicles derived from human Wharton's Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1[J]. Stem Cell Res Ther, 2014, 5 (2): 40.
doi: 10.1186/scrt428 |
18 |
YOO K D , CHA R H , LEE S , et al. Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury[J]. J Cell Mol Med, 2020, 24 (10): 5515- 5527.
doi: 10.1111/jcmm.15207 |
19 |
SHEN B , LIU J , ZHANG F , et al. CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury[J]. Stem Cells Int, 2016, 2016, 1240301.
doi: 10.1155/2016/1240301 |
20 | 金翠, 曹永梅, 尚嘉伟, 等. 骨髓间充质干细胞来源外泌体保护脓毒症相关急性肾损伤的体外研究[J]. 同济大学学报: 医学版, 2022, 43 (2): 157- 164. |
JIN C , CAO Y M , SHANG J W , et al. Protective effects of exosomes derived from bone mesenchymal stem cells in sepsis-induced acute kidney injury cell model in vitro[J]. Journal of Tongji University: Medical Science, 2022, 43 (2): 157- 164. | |
21 | 徐莹, 周茹, 张欣洲, 等. 间充质干细胞外泌体对CLP大鼠急性肾损伤作用研究[J]. 湖北医药学院学报, 2022, 41 (2): 116- 120. |
XU Y , ZHOU R , ZHANG X Z , et al. The effect of mesenchymal stem cell-derived exosomes on acute kidney injury in CLP rats[J]. Journal of Hubei University of Medicine, 2022, 41 (2): 116- 120. | |
22 |
KUNNUMAKKARA A B , SHABNAM B , GIRISA S , et al. Inflammation, NF-κB, and chronic diseases: how are they linked?[J]. Crit Rev Immunol, 2020, 40 (1): 1- 39.
doi: 10.1615/CritRevImmunol.2020033210 |
23 |
ZHANG R X , ZHU Y , LI Y , et al. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression[J]. Biotechnol Lett, 2020, 42 (4): 669- 679.
doi: 10.1007/s10529-020-02831-2 |
24 | 高芳. 脂肪间充质干细胞外泌体对脓毒症急性肾损伤的保护作用及机制研究[D]. 苏州: 苏州大学, 2021. |
GAO F. Renoprotection and mechanisms of adipose-derived mesenchymal stem cell-derived exosome on sepsis-induced acute kidney injury[D]. Suzhou: Soochow University, 2021. | |
25 |
GAO F , ZUO B J , WANG Y P , et al. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway[J]. Life Sci, 2020, 255, 117719.
doi: 10.1016/j.lfs.2020.117719 |
26 |
BERTHELOOT D , LATZ E , FRANKLIN B S . Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18 (5): 1106- 1121.
doi: 10.1038/s41423-020-00630-3 |
27 |
KETELUT-CARNEIRO N , FITZGERALD K A . Apoptosis, pyroptosis, and necroptosis-Oh My!The many ways a cell can die[J]. J Mol Biol, 2022, 434 (4): 167378.
doi: 10.1016/j.jmb.2021.167378 |
28 |
WAN Y H , YU Y H , YU C J , et al. Human umbilical cord mesenchymal stem cell exosomes alleviate acute kidney injury by inhibiting pyroptosis in rats and NRK-52E cells[J]. Ren Fail, 2023, 45 (1): 2221138.
doi: 10.1080/0886022X.2023.2221138 |
29 |
YU Y H , CHEN M L , GUO Q T , et al. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage[J]. Cell Mol Biol Lett, 2023, 28 (1): 12.
doi: 10.1186/s11658-023-00425-0 |
30 |
BRUNO S , GRANGE C , COLLINO F , et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury[J]. PLoS One, 2012, 7 (3): e33115.
doi: 10.1371/journal.pone.0033115 |
31 |
王汝霖, 林淼, 黎力平, 等. 骨髓间充质干细胞来源exosome对大鼠肾缺血再灌注损伤的保护作用[J]. 中华医学杂志, 2014, 94 (42): 3298- 3303.
doi: 10.3760/cma.j.issn.0376-2491.2014.42.005 |
WANG R L , LIN M , LI L P , et al. Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats[J]. Natl Med J China, 2014, 94 (42): 3298- 3303.
doi: 10.3760/cma.j.issn.0376-2491.2014.42.005 |
|
32 |
LINDOSO R S , COLLINO F , BRUNO S , et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury[J]. Stem Cells Dev, 2014, 23 (15): 1809- 1819.
doi: 10.1089/scd.2013.0618 |
33 |
YE K , CHEN Z M , XU Y F . The double-edged functions of necroptosis[J]. Cell Death Dis, 2023, 14 (2): 163.
doi: 10.1038/s41419-023-05691-6 |
34 |
FRANK D , VINCE J E . Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26 (1): 99- 114.
doi: 10.1038/s41418-018-0212-6 |
35 |
MORGAN M J , KIM Y S . Roles of RIPK3 in necroptosis, cell signaling, and disease[J]. Exp Mol Med, 2022, 54 (10): 1695- 1704.
doi: 10.1038/s12276-022-00868-z |
36 |
ZHANG Z H , LIU W H , SHEN M L , et al. Protective effect of GM1 attenuates hippocampus and cortex apoptosis after ketamine exposure in neonatal rat via PI3K/AKT/GSK3β pathway[J]. Mol Neurobiol, 2021, 58 (7): 3471- 3483.
doi: 10.1007/s12035-021-02346-5 |
37 |
MALIREDDI R K S , KESAVARDHANA S , KANNEGANTI T D . ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis)[J]. Front Cell Infect Microbiol, 2019, 9, 406.
doi: 10.3389/fcimb.2019.00406 |
38 |
HE Y , HARA H , NÚÑEZ G . Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41 (12): 1012- 1021.
doi: 10.1016/j.tibs.2016.09.002 |
39 |
TANG C Y , MA Z W , ZHU J F , et al. P53 in kidney injury and repair: mechanism and therapeutic potentials[J]. Pharmacol Ther, 2019, 195, 5- 12.
doi: 10.1016/j.pharmthera.2018.10.013 |
40 | 曹婧媛. 人脐带间充质干细胞源外泌体对急性肾损伤的治疗作用及机制探讨[D]. 南京: 东南大学, 2021. |
CAO J Y. The therapeutic effect and mechanism of human umbilical cord mesenchymal stem cell-derived exosomes in acute kidney injury[D]. Nanjing: Southeast University, 2021. (in Chinese) | |
41 |
CAO J Y , WANG B , TANG T T , et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11 (11): 5248- 5266.
doi: 10.7150/thno.54550 |
42 |
LI W , HE P C , HUANG Y G , et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11 (1): 222- 256.
doi: 10.7150/thno.49860 |
43 |
WANG B Y , JIA H Y , ZHANG B , et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J]. Stem Cell Res Ther, 2017, 8 (1): 75.
doi: 10.1186/s13287-016-0463-4 |
44 |
WANG J J , JIA H Y , ZHANG B , et al. HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro[J]. Cytotherapy, 2018, 20 (1): 29- 44.
doi: 10.1016/j.jcyt.2017.08.002 |
45 |
SAKAI Y , OKU M . ATG and ESCRT control multiple modes of microautophagy[J]. FEBS Lett, 2024, 598 (1): 48- 58.
doi: 10.1002/1873-3468.14760 |
46 | JIA H Y , LIU W Z , ZHANG B , et al. HucMSC exosomes-delivered 14-3-3ζ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury[J]. Am J Transl Res, 2018, 10 (1): 101- 113. |
47 |
LIU W , HU C H , ZHANG B Y , et al. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9[J]. Biol Proced Online, 2023, 25 (1): 10.
doi: 10.1186/s12575-023-00198-y |
48 |
ZHANG K Y , CHEN S , SUN H M , et al. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment[J]. J Biol Chem, 2020, 295 (34): 12203- 12213.
doi: 10.1074/jbc.RA120.012732 |
49 |
CHOI H Y , MOON S J , RATLIFF B B , et al. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury[J]. PLoS One, 2014, 9 (2): e87853.
doi: 10.1371/journal.pone.0087853 |
50 |
CHOI H Y , LEE H G , KIM B S , et al. Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction[J]. Stem Cell Res Ther, 2015, 6 (1): 18.
doi: 10.1186/s13287-015-0012-6 |
51 |
JU G Q , CHENG J , ZHONG L , et al. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction[J]. PLoS One, 2015, 10 (3): e0121534.
doi: 10.1371/journal.pone.0121534 |
52 |
JAGANJAC M , MILKOVIC L , ZARKOVIC N , et al. Oxidative stress and regeneration[J]. Free Radic Biol Med, 2022, 181, 154- 165.
doi: 10.1016/j.freeradbiomed.2022.02.004 |
53 |
LI X Q , HAN Y , MENG Y , et al. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases[J]. RNA Biol, 2024, 21 (1): 1- 20.
doi: 10.1080/15476286.2023.2264666 |
54 |
ZHAO L M , HAO Y J , TANG S Q , et al. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury[J]. Front Cell Dev Biol, 2023, 11, 1276217.
doi: 10.3389/fcell.2023.1276217 |
55 |
ZHAO M , LIU S Y , WANG C S , et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA[J]. ACS Nano, 2021, 15 (1): 1519- 1538.
doi: 10.1021/acsnano.0c08947 |
56 |
WANG C , LI C C , PENG H , et al. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes[J]. Cell Physiol Biochem, 2014, 34 (3): 891- 902.
doi: 10.1159/000366307 |
57 |
ZHANG G Y , ZOU X Y , HUANG Y Q , et al. Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats[J]. Kidney Blood Press Res, 2016, 41 (2): 119- 128.
doi: 10.1159/000443413 |
58 |
CAO H M , CHENG Y Q , GAO H Q , et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury[J]. ACS Nano, 2020, 14 (4): 4014- 4026.
doi: 10.1021/acsnano.9b08207 |
59 |
ZHANG G Y , ZOU X Y , MIAO S , et al. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats[J]. PLoS One, 2014, 9 (3): e92129.
doi: 10.1371/journal.pone.0092129 |
60 |
ZHOU Y , XU H T , XU W R , et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro[J]. Stem Cell Res Ther, 2013, 4 (2): 34.
doi: 10.1186/scrt194 |
61 | 张志远, 侯艳萍, 邹翔宇, 等. 人脐带间充质干细胞微囊减轻小鼠急性肾损伤的研究[J]. 中华细胞与干细胞杂志: 电子版, 2018, 8 (5): 264- 271. |
ZHANG Z Y , HOU Y P , ZOU X Y , et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells ameliorate acute kidney injury in mice[J]. Chinese Journal of Cell and Stem Cell: Electronic Edition, 2018, 8 (5): 264- 271. | |
62 |
TANG C Y , CAI J , YIN X M , et al. Mitochondrial quality control in kidney injury and repair[J]. Nat Rev Nephrol, 2021, 17 (5): 299- 318.
doi: 10.1038/s41581-020-00369-0 |
63 |
WANG S Y , XU Y , HONG Q , et al. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p[J]. Cell Tissue Res, 2023, 392 (2): 517- 533.
doi: 10.1007/s00441-022-03729-3 |
64 |
KIM H , LEE S K , HONG S , et al. Pan PPAR agonist stimulation of induced MSCs produces extracellular vesicles with enhanced renoprotective effect for acute kidney injury[J]. Stem Cell Res Ther, 2024, 15 (1): 9.
doi: 10.1186/s13287-023-03577-0 |
65 |
HE W L , QIN D Z , LI B L , et al. Immortalized canine adipose-derived mesenchymal stem cells alleviate gentamicin-induced acute kidney injury by inhibiting endoplasmic reticulum stress in mice and dogs[J]. Res Vet Sci, 2021, 136, 39- 50.
doi: 10.1016/j.rvsc.2021.02.001 |
[1] | Yingguang LÜ, Guangming JIAO, Jinfang SANG, Zhipeng KOU, Tao LIU, Yue WANG, Xiangyu LU, Chenxi PIAO, Yajun MA, Jiantao ZHANG, Hongbin WANG. The Effect of Adipose Mesenchymal Stem Cells on the Healing Process of Autologous Skin Transplantation in Bama Miniature Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3193-3204. |
[2] | Mingde ZHU, Yijing CHEN, Pengxiu DAI, Yihua ZHANG, Xinke ZHANG. Study on the Hnf1b, Pdx1, Ngn3 and Pax4/Nkx6.1 Reprograms Canine Adipose-derived MSCs to Differentiate into IPCs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3205-3212. |
[3] | TAN Ning, LI Balun, HAN Miao, LI Chenchen, JING Yuanxiang, KOU Zheng, LI Na, PENG Sha, ZHAO Xianjun, HUA Jinlian. Evaluation of Therapeutic Effect of Mitoquionl Mesylate Pretreated Adipose Derived Mesenchymal Stem Cells on Canine Diabetes Mellitus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1328-1344. |
[4] | LIU Xinxin, ZHOU Enyou, AN Zhiyuan, CAI Chunxia, ZHANG Lujie, LI Jianzeng, LI Zhuanjian, YAN Fengbin, KANG Xiangtao, GAO Yanling, HAN Ruili. Effects of Exosomes from Different Sources on Bone Development and Bone Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 419-426. |
[5] | LIU Yanchen, ZHOU Shiying, ZHANG Yang, GAO Yang, GUAN Weijun. Isolation, Culture and Biological Characteristics Study of Holstein Bovine Lung Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 540-551. |
[6] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[7] | WANG Xinxin, LIN Shumei, ZHAO Dongdong, WANG Xuesheng. Role of Exosomes Secreted by Alveolar Epithelial Cells in Regulating Macrophage Polarization in Acute Lung Injury [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 71-78. |
[8] | TIAN Qihui, ZHANG Liang, LONG Yali. Study on the Effect of Astragalus on Proliferation of Bone Marrow Mesenchymal Stem Cells in Anoxic Microenvironment based on PI3K-AKT Signal Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 346-354. |
[9] | MA Yajun, JIAO Zhihui, LIU Xiaoning, LU Xiangyu, LIU Tao, WANG Yue, PIAO Chenxi, WANG Hongbin. Effects of Adipose-derived Mesenchymal Stem Cells on Pyroptosis of Miniature Pigs with Hepatic Ischemia-Reperfusion Combined with Hepatectomy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 355-364. |
[10] | JIAO Guangming, LÜ Yingguang, SANG Jinfang, KOU Zhipeng, LIU Tao, WANG Yue, LU Xiangyu, PIAO Chenxi, MA Yajun, ZHANG Jiantao, WANG Hongbin. Effect of Adipose Mesenchymal Stem Cells in Combination with Methylprednisolone on Allogeneic Skin Grafts in Minipigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3533-3545. |
[11] | ZHANG Jiabin, XU Zhao, ZHOU Guangyu, ZHANG Mengdi, FU Yang, LIU Jiaqi, ZHOU Donghai. Effects of Electroacupuncture Therapy on Renal Function, Calcium and Phosphorus Metabolism, Antioxidant Capacity and NRF2 Signaling Pathway in AKI Dogs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 803-815. |
[12] | GUO Xinyu, WANG Haotian, ZHANG Xuemei, WANG Xiaolong, LI Heping, YANG Yanbin, ZHONG Kai. Study on the Regulation of Macrophage Polarization by Exosomes Derived from Cow Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4754-4765. |
[13] | LU Jiang, ZHU Daoxian, LIU Li, HAO Fuxing, WU Zhi, FU Hongqing. Artesunate Improves Acute Renal Injury in Dogs by Inhibiting Oxidative Stress Via Keap1/Nrf2 Signaling Pathway in vitro and in vivo [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2343-2353. |
[14] | LONG Yali, TIAN Qihui. Effects of Total Flavonoids of Drynariae Rhizoma on Osteogenic Differentiation Potential of Canine Bone Marrow Mesenchymal Stem Cells in Hypoxic Environment [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1280-1288. |
[15] | KUANG Jingjing, HE Yanjuan, HU Qun, GU Ting, WU Zhenfang, CAI Gengyuan, HONG Linjun. Effect of TIMP2 Protein Derived from Porcine Uterine Fluid Exosomes on Embryo Implantation During Early Pregnancy [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1122-1132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||