Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 1-14.doi: 10.11843/j.issn.0366-6964.2025.01.001
• Review • Next Articles
BAO Binwu1,2(), ZOU Huiying2, LI Junliang2, GAO Chen2, GAO Huijiang2, DU Zhenwei2, ZHANG Boyu2, LI Junya1,2,*(
), GAO Xue2,*(
)
Received:
2024-06-27
Online:
2025-01-23
Published:
2025-01-18
Contact:
LI Junya, GAO Xue
E-mail:b013019@126.com;lijunya@caas.cn;gaoxue@caas.cn
CLC Number:
BAO Binwu, ZOU Huiying, LI Junliang, GAO Chen, GAO Huijiang, DU Zhenwei, ZHANG Boyu, LI Junya, GAO Xue. Research Progress in Gene Editing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 1-14.
Table 1
Development and optimization of CRISPR-Cas technology"
名称 Name | 类型 Type | 尺寸(AA) Size | 特征 Feature | 年份 Year | 文献 Reference |
SpCas9 | Cas9 | 1 368 | 第一个在人类细胞中实现靶向诱变的Cas9同源物 | 2013 | Cong等[ |
SaCas9 | Cas9 | 1 053 | 具有高效、特异性和耐受性良好 | 2015 | Ran等[ |
Cpf1 | Cas12a | 1 353 | Cpf1只需要42 nt crRNA,切割导致原间隔区远端5′突出,提高基于NHEJ的基因插入的效率,一种单RNA引导的核酸酶,只需要crRNA,并包含单个RuvC结构域 | 2015 | Zetsche等[ |
xCas9 | Cas9 | 1 368 | 扩大了PAM兼容性,DNA特异性比SpCas9高得多,脱靶活性低 | 2018 | Hu等[ |
Cas13a(C2c2) | Cas13 | — | C2c2仅作为RNA引导的RNA靶向CRISPR效应子发挥作用 | 2016 | Abudayyeh等[ |
CjCas9 | Cas9 | 984 | CjCas9由984个氨基酸残基组成(比SpCas9或SaCas9小) | 2017 | Kim等[ |
SpCas9-NG | Cas9 | 1 368 | SpCas9-NG在NGG位点的裂解活性低于SpCas9, 使NG PAM识别成为可能 | 2018 | Nishimasu等[ |
LbCpf1 and FnCpf1 | Cas12 | 1 300 | 由一个RuvC核酸内切酶结构域组成,在植物细胞中,FnCpf1编辑了一个TTV PAM位点,对Cpf1 TTTV PAM位点进行优化 | 2018 | Zhong等[ |
AaCas12b | Cas12 | 1 129 | 尺度小,基因组靶向范围广,不易脱靶,可以在体外4 ℃和100 ℃之间切割靶DNA | 2018 | Teng等[ |
CasX(Cas12e) | Cas12 | 986 | 分子量小,编辑效率高,非特异性切割活性低 | 2019 | Liu等[ |
BhCas12b | Cas12 | 1 108 | 优化后的BhCas12 v4可以在各种基因组编辑环境中用作有效的可编程核酸酶 | 2019 | Strecker等[ |
SpG和SpRY | Cas9 | 140 | SpRY核酸酶和碱基编辑器变体可以靶向几乎所有PAM,是目前最与PAM序列兼容的Cas9突变体 | 2020 | Walton等[ |
CasΦ(Cas12j) | Cas12 | 700~800 | CasΦ体积小,但功能齐全,将多种功能组合成一个单一蛋白可实现更容易的载体介导递送,能更广泛的识别基因序列 | 2020 | Pausch等[ |
MAD7(ErCas12a) | Cas12 | 1 263 | MAD7脱靶概率较低,具有不同的PAM识别位点,并且不需要反式激活CRISPR RNA(tracrRNA) | 2021 2020 2020 | Jarczynska等[ Liu等[ Price等[ |
AtCas9 | Cas9 | — | 突破PAM限制,实现近乎无PAM的切割 | 2022 | Shi等[ |
Casπ (Cas12l) | Cas12 | 850~867 | 通过识别CCN PAM来切割底物DNA,能在哺乳动物细胞中实现有效的基因编辑 | 2023 | Sun等[ |
Cas8-HNH和 Cas5-HNH | Cas8 Cas5 | — | 具有高度特异性,使用长达32个碱基对的gRNA,减少脱靶可能性 | 2023 | Altae-tran等[ |
AsCas12f1 | Cas12 | 422 | 低毒性,高效率链霉菌基因编辑工具 | 2024 | Hua等[ |
Table 2
Development and optimization of base editing systems"
类型 Type | 名称 Name | 特征 Feature | 编辑效率 Editing efficiency | 年份 Year | 文献 Reference |
BE编辑系统 BE editing system | BE1 | 由dCas9与APOBEC1的融合蛋白构成 | 表观编辑效率44%(体外),0.8~7.7%(体内) | 2016 | Komor等[ |
BE2 | 将来源于噬菌体的抑制子UGI引入BE1 | 表观编辑效率20%(体内) | 2016 | Komor等[ | |
BE3 | 将BE2中的dCas9替换为nCas9(D10A) | 表观编辑效率20~30%(体外),15~75%(体内) | 2016 | Komor等[ | |
HF-BE3 | 将BE3与一种高保真SpCas9变体(HF-Cas9)结合 | 将BE3的脱靶水平降低了37倍 | 2017 | Rees等[ | |
BE4 | 优化nCas9与APOBEC1的Linker长度 | 表观编辑效率50%(体内),效率比BE3提高1.5倍 | 2017 | Komor等[ | |
BE4max | BE4基础上优化核定位信号,密码子 | 效率比BE4提高3倍 | 2018 | Koblan等[ | |
ABE | 成功实现了A-T到G-C的碱基更改 | — | 2017 | Gaudelli等[ | |
ABE7.10 | 野生型ecTadA单体与定向进化出的ecTadA* 单体融合形成单链异二聚体 | 编辑效率可达53% | 2017 | Gaudelli等[ | |
ABEmax | 通过对ABE7.10进行密码子优化以及增加NLS个数 | 编辑效率比ABE7.10提高~1.5至2倍 | 2018 | Koblan等[ | |
ABE8s | 在BE7.10的TadA中引入额外的突变,构建了ABE8s | 编辑效率比ABE7.10提高约4.2倍 | 2020 | Gaudelli等[ | |
ABE9 | 实现了高精度,低脱靶的碱基编辑 | — | 2023 | Chen等[ | |
hyABE | 提高了靠近PAM区A-G的转换效率,扩大了编辑窗口 | 编辑效率43.0~94.6% | 2023 | Xue等[ | |
GhABE8e | 与ABE7.10相比,编辑效率更高,脱氨速度更快 | 平均编辑效率为60%~99.9% | 2024 | Wang等[ | |
DAF-CBE和DAF-TBE | 不依赖脱氨酶,扩展了碱基编辑器的转换类型, 效率相似,但尺寸更小,脱靶效应更低 | DAF-CBE平均编辑效率为20.7%; DAF-TBE平均编辑效率为22.5% | 2024 | Ye等[ | |
GBE | 在哺乳动物细胞中实现C-G的颠换, 而在细菌中实现C-A的颠换 | 大肠杆菌中编辑效率为87.2%±6.9%; 哺乳动物中编辑效率在5.3%~53.0% | 2021 | Zhao等[ | |
PE编辑系统 PE editing system | PE1 | 野生型的M-MLV逆转录酶与nCas9(H840A)的融合蛋白 | 对点突变的编辑效率最高可达到5.5%, 小片段插入删除编辑效率在4%~17%之间 | 2019 | Anzalone等[ |
PE2 | 对PE1的逆转录酶进行改造 | 点突变的编辑编辑效率相比PE1提高了1.6~5.1倍 | 2019 | Anzalone等[ | |
PE3 | 在pegRNA下游增加未编辑基因组DNA的识别位点 | — | 2019 | Anzalone等[ | |
PE4/PE5 | PE2/PE3系统分别插入MMR抑制蛋白 PE4(PE2+MLH1dn)PE5(PE3+MLH1dn) | 与PE2/PE3相比,将替换、小插入和小缺失 引物编辑的效率分别平均提高7.7和2.0倍 | 2021 | Chen等[ | |
PEmax | 通过改变RT密码子使用、SpCas9突变、NLS序列以及 nCas9和RT之间肽连接子的长度和组成来优化PE2蛋白 | 编辑效率大于30% | 2021 | Chen等[ | |
PE6a-g | 产生了比最先进编辑PEmax少516~810个碱基对的先导编辑 | PE6变体的平均编辑效率比PEmax提高了1.4倍 | 2023 | Doman等[ | |
PE7 | 将La蛋白的N端结构域融合到现有PEmax C端(PEmax-C) | 与PEmax相比,PE7编辑效率提高并对脱靶编辑影响最小 | 2024 | Yan等[ | |
CPE | 优先识别富含T的基因组区域,可进行 多基因的编辑,且脱靶效应极低 | niCPE和sniCPE在人类细胞中的编辑频率 分别为24.89%和40.75% | 2024 | Liang等[ | |
线粒体编辑系统 Mitochondrial editing system | DdCBE | 成功实现了线粒体中C to T的碱基编辑 | 编辑效率15%~30% | 2022 | Mok等[ |
TALED | 成功实现了线粒体中A to G的碱基编辑 | — | 2022 | Cho等[ | |
mitoBEs | 不依赖于DddA,提升了线粒体碱基编辑的精准性 | 编辑效率为18%~36% | 2023 | Yi等[ | |
CyDENT | 细胞核、线粒体和叶绿体中均可实现高效胞 嘧啶碱基编辑;不依赖CRISPR | 14%的编辑效率和95%的链特异性 | 2023 | Hu等[ |
1 | VERMA P J , SUMER H , LIU J .Applications of genome modulation and editing[M].New York: Humana,2022. |
2 |
SCHERER S , DAVIS R W .Replacement of chromosome segments with altered DNA sequences constructed in vitro[J].Proc Natl Acad Sci U S A,1979,76(10):4951-4955.
doi: 10.1073/pnas.76.10.4951 |
3 |
JINEK M , CHYLINSKI K , FONFARA I , et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
doi: 10.1126/science.1225829 |
4 |
MALI P , YANG L H , ESVELT K M , et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.
doi: 10.1126/science.1232033 |
5 |
GAUDELLI N M , KOMOR A C , REES H A , et al.Programmable base editing of A ·T to G ·C in genomic DNA without DNA cleavage[J].Nature,2017,551(7681):464-471.
doi: 10.1038/nature24644 |
6 |
ANZALONE A V , RANDOLPH P B , DAVIS J R , et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature,2019,576(7785):149-157.
doi: 10.1038/s41586-019-1711-4 |
7 | RUFFOLO J A , NAYFACH S , GALLAGHER J , et al.Design of highly functional genome editors by modeling the universe of CRISPR-Cas sequences[J].bioRxiv,2024,04,22, 590591. |
8 |
MILLER J , MCLACHLAN A D , KLUG A .Repetitive zinc-binding domains in the protein transcription factor ⅢA from Xenopus oocytes[J].EMBO J,1985,4(6):1609-1614.
doi: 10.1002/j.1460-2075.1985.tb03825.x |
9 |
DIAKUN G P , FAIRALL L , KLUG A .EXAFS study of the zinc-binding sites in the protein transcription factor ⅢA[J].Nature,1986,324(6098):698-699.
doi: 10.1038/324698a0 |
10 |
KIM Y G , CHA J , CHANDRASEGARAN S .Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J].Proc Natl Acad Sci U S A,1996,93(3):1156-1160.
doi: 10.1073/pnas.93.3.1156 |
11 |
BIBIKOVA M , GOLIC M , GOLIC K G , et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J].Genetics,2002,161(3):1169-1175.
doi: 10.1093/genetics/161.3.1169 |
12 |
URNOV F D , MILLER J C , LEE Y L , et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J].Nature,2005,435(7042):646-651.
doi: 10.1038/nature03556 |
13 |
PASCHON D E , LUSSIER S , WANGZOR T , et al.Diversifying the structure of zinc finger nucleases for high-precision genome editing[J].Nat Commun,2019,10(1):1133.
doi: 10.1038/s41467-019-08867-x |
14 |
MILLER J C , PATIL D P , XIA D F , et al.Enhancing gene editing specificity by attenuating DNA cleavage kinetics[J].Nat Biotechnol,2019,37(8):945-952.
doi: 10.1038/s41587-019-0186-z |
15 |
KATAYAMA S , WATANABE M , KATO Y , et al.Engineering of zinc finger nucleases through structural modeling improves genome editing efficiency in cells[J].Adv Sci (Weinh),2024,11(23):2310255.
doi: 10.1002/advs.202310255 |
16 |
DOYON Y , VO T D , MENDEL M C , et al.Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures[J].Nat Methods,2011,8(1):74-79.
doi: 10.1038/nmeth.1539 |
17 |
ZHANG Z X , ZHANG S L , HUANG X , et al.Rapid assembly of customized TALENs into multiple delivery systems[J].PLoS One,2013,8(11):e80281.
doi: 10.1371/journal.pone.0080281 |
18 |
CERMAK T , DOYLE E L , CHRISTIAN M , et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J].Nucleic Acids Res,2011,39(12):e82.
doi: 10.1093/nar/gkr218 |
19 |
JAIN S , SHUKLA S , YANG C , et al.TALEN outperforms Cas9 in editing heterochromatin target sites[J].Nat Commun,2021,12(1):606.
doi: 10.1038/s41467-020-20672-5 |
20 |
MUSSOLINO C , ALZUBI J , FINE E J , et al.TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity[J].Nucleic Acids Res,2014,42(10):6762-6773.
doi: 10.1093/nar/gku305 |
21 |
ISHINO Y , SHINAGAWA H , MAKINO K , et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J].J Bacteriol,1987,169(12):5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 |
22 |
POURCEL C , SALVIGNOL G , VERGNAUD G .CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J].Microbiology,2005,151(3):653-663.
doi: 10.1099/mic.0.27437-0 |
23 |
MOJICA F J M , DÍEZ-VILLASEÑOR C , GARCÍA-MARTÍNEZ J , et al.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J].J Mol Evol,2005,60(2):174-182.
doi: 10.1007/s00239-004-0046-3 |
24 |
BARRANGOU R , FREMAUX C , DEVEAU H , et al.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712.
doi: 10.1126/science.1138140 |
25 |
刘志国.CRISPR/Cas9系统介导基因组编辑的研究进展[J].畜牧兽医学报,2014,45(10):1567-1583.
doi: 10.11843/j.issn.0366-6964.2014.10.001 |
LIU Z G .Research progress on CRISPR/Cas9 mediated genome editing[J].Acta Veterinaria et Zootechnica Sinica,2014,45(10):1567-1583.
doi: 10.11843/j.issn.0366-6964.2014.10.001 |
|
26 |
DATSENKO K A , POUGACH K , TIKHONOV A , et al.Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system[J].Nat Commun,2012,3,945.
doi: 10.1038/ncomms1937 |
27 |
WESTRA E R , SEMENOVA E , DATSENKO K A , et al.Type I-E CRISPR-Cas systems discriminate target from non-Target DNA through base pairing-independent PAM recognition[J].PLoS Genet,2013,9(9):e1003742.
doi: 10.1371/journal.pgen.1003742 |
28 |
CONG L , RAN F A , COX D , et al.Multiplex genome engineering using CRISPR/Cas Systems[J].Science,2013,339(6121):819-823.
doi: 10.1126/science.1231143 |
29 |
WU X B , SCOTT D A , KRIZ A J , et al.Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells[J].Nat Biotechnol,2014,32(7):670-676.
doi: 10.1038/nbt.2889 |
30 |
JAVAID D , GANIE S Y , HAJAM Y A , et al.CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology[J].Mol Biol Rep,2022,49(12):12133-12150.
doi: 10.1007/s11033-022-07880-6 |
31 |
RAN F A , CONG L , YAN W X , et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015,520(7546):186-191.
doi: 10.1038/nature14299 |
32 |
ZETSCHE B , GOOTENBERG J S , ABUDAYYEH O O , et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J].Cell,2015,163(3):759-771.
doi: 10.1016/j.cell.2015.09.038 |
33 |
HU J H , MILLER S M , GEURTS M H , et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature,2018,556(7699):57-63.
doi: 10.1038/nature26155 |
34 |
ABUDAYYEH O O , GOOTENBERG J S , KONERMANN S , et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573.
doi: 10.1126/science.aaf5573 |
35 |
KIM E , KOO T , PARK S W , et al.In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J].Nat Commun,2017,8,14500.
doi: 10.1038/ncomms14500 |
36 |
NISHIMASU H , SHI X , ISHIGURO S , et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space[J].Science,2018,361(6408):1259-1262.
doi: 10.1126/science.aas9129 |
37 |
ZHONG Z H , ZHANG Y X , YOU Q , et al.Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites[J].Mol Plant,2018,11(7):999-1002.
doi: 10.1016/j.molp.2018.03.008 |
38 | TENG F , CUI T T , FENG G H , et al.Repurposing CRISPR-Cas12b for mammalian genome engineering[J].Cell Discov,2018,4,63. |
39 |
LIU J J , ORLOVA N , OAKES B L , et al.CasX enzymes comprise a distinct family of RNA-guided genome editors[J].Nature,2019,566(7743):218-223.
doi: 10.1038/s41586-019-0908-x |
40 |
STRECKER J , JONES S , KOOPAL B , et al.Engineering of CRISPR-Cas12b for human genome editing[J].Nat Commun,2019,10(1):212.
doi: 10.1038/s41467-018-08224-4 |
41 |
WALTON R T , CHRISTIE K A , WHITTAKER M N , et al.Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J].Science,2020,368(6488):290-296.
doi: 10.1126/science.aba8853 |
42 |
PAUSCH P , AL-SHAYEB B , BISOM-RAPP E , et al.CRISPR-CasΦ from huge phages is a hypercompact genome editor[J].Science,2020,369(6501):333-337.
doi: 10.1126/science.abb1400 |
43 |
JARCZYNSKA Z D , RENDSVIG J K H , PAGELS N , et al.DIVERSIFY: a fungal multispecies gene expression platform[J].ACS Synth Biol,2021,10(3):579-588.
doi: 10.1021/acssynbio.0c00587 |
44 |
LIU Z Y , SCHIEL J A , MAKSIMOVA E , et al.ErCas12a CRISPR-MAD7 for model generation in human cells, mice, and rats[J].CRISPR J,2020,3(2):97-108.
doi: 10.1089/crispr.2019.0068 |
45 |
PRICE M A , CRUZ R , BRYSON J , et al.Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7[J].Biotechnol Bioeng,2020,117(6):1805-1816.
doi: 10.1002/bit.27312 |
46 |
SHI Y J , DUAN M , DING J M , et al.DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9[J].Mol Cell,2022,82(21):4160-4175.e6.
doi: 10.1016/j.molcel.2022.09.032 |
47 |
SUN A , LI C P , CHEN Z H , et al.The compact Casπ (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation[J].Cell Res,2023,33(3):229-244.
doi: 10.1038/s41422-022-00771-2 |
48 |
ALTAE-TRAN H , KANNAN S , SUBERSKI A J , et al.Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering[J].Science,2023,382(6673):eadi1910.
doi: 10.1126/science.adi1910 |
49 |
HUA H M , XU J F , HUANG X S , et al.Low-Toxicity and high-efficiency Streptomyces genome editing tool based on the miniature type V-F CRISPR/Cas nuclease AsCas12f1[J].J Agric Food Chem,2024,72(10):5358-5367.
doi: 10.1021/acs.jafc.3c09101 |
50 |
KOMOR A C , KIM Y B , PACKER M S , et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424.
doi: 10.1038/nature17946 |
51 |
MATSOUKAS I G .Commentary: programmable base editing of A ·T to G ·C in genomic DNA without DNA cleavage[J].Front Genet,2018,9,21.
doi: 10.3389/fgene.2018.00021 |
52 |
LANDRUM M J , LEE J M , BENSON M , et al.ClinVar: public archive of interpretations of clinically relevant variants[J].Nucleic Acids Res,2016,44(D1):D862-D868.
doi: 10.1093/nar/gkv1222 |
53 |
KOBLAN L W , DOMAN J L , WILSON C , et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nat Biotechnol,2018,36(9):843-846.
doi: 10.1038/nbt.4172 |
54 |
GAUDELLI N M , LAM D K , REES H A , et al.Directed evolution of adenine base editors with increased activity and therapeutic application[J].Nat Biotechnol,2020,38(7):892-900.
doi: 10.1038/s41587-020-0491-6 |
55 | ZHAO D D , LI J , LI S W , et al.Publisher correction: glycosylase base editors enable C-to-A and C-to-G base changes[J].Nat Biotechnol,2021,39(1):115. |
56 |
YAN J , CIRINCIONE A , ADAMSON B .Prime editing: precision genome editing by reverse transcription[J].Mol Cell,2020,77(2):210-212.
doi: 10.1016/j.molcel.2019.12.016 |
57 |
CHEN P J , HUSSMANN J A , YAN J , et al.Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J].Cell,2021,184(22):5635-5652.e29.
doi: 10.1016/j.cell.2021.09.018 |
58 |
YAN J , OYLER-CASTRILLO P , RAVISANKAR P , et al.Improving prime editing with an endogenous small RNA-binding protein[J].Nature,2024,628(8008):639-647.
doi: 10.1038/s41586-024-07259-6 |
59 |
LIANG R H , HE Z X , ZHAO K T , et al.Prime editing using CRISPR-Cas12a and circular RNAs in human cells[J].Nat Biotechnol,2024,42(12):1867-1875.
doi: 10.1038/s41587-023-02095-x |
60 |
KAPLANIS J , AKAWI N , GALLONE G , et al.Exome-wide assessment of the functional impact and pathogenicity of multinucleotide mutations[J].Genome Res,2019,29(7):1047-1056.
doi: 10.1101/gr.239756.118 |
61 |
MOK B Y , DE MORAES M H , ZENG J , et al.A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing[J].Nature,2020,583(7817):631-637.
doi: 10.1038/s41586-020-2477-4 |
62 |
CHO S I , LEE S , MOK Y G , et al.Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases[J].Cell,2022,185(10):1764-1776.e12.
doi: 10.1016/j.cell.2022.03.039 |
63 |
YI Z Y , ZHANG X X , TANG W , et al.Strand-selective base editing of human mitochondrial DNA using mitoBEs[J].Nat Biotechnol,2024,42(3):498-509.
doi: 10.1038/s41587-023-01791-y |
64 |
REES H A , KOMOR A C , YEH W H , et al.Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J].Nat Commun,2017,8,15790.
doi: 10.1038/ncomms15790 |
65 |
KOMOR A C , ZHAO K T , PACKER M S , et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity[J].Sci Adv,2017,3(8):eaao4774.
doi: 10.1126/sciadv.aao4774 |
66 |
CHEN L , ZHANG S , XUE N N , et al.Engineering a precise adenine base editor with minimal bystander editing[J].Nat Chem Biol,2023,19(1):101-110.
doi: 10.1038/s41589-022-01163-8 |
67 |
XUE N N , LIU X , ZHANG D , et al.Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD[J].Nat Commun,2023,14(1):1224.
doi: 10.1038/s41467-023-36887-1 |
68 |
WANG G Y , WANG F Q , XU Z P , et al.Precise fine-turning of GhTFL1 by base editing tools defines ideal cotton plant architecture[J].Genome Biol,2024,25(1):59.
doi: 10.1186/s13059-024-03189-8 |
69 |
YE L J , ZHAO D D , LI J , et al.Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells[J].Nat Biotechnol,2024,42(10):1538-1547.
doi: 10.1038/s41587-023-02050-w |
70 |
ZHAO D D , LI J , LI S W , et al.Glycosylase base editors enable C-to-A and C-to-G base changes[J].Nat Biotechnol,2021,39(1):35-40.
doi: 10.1038/s41587-020-0592-2 |
71 |
DOMAN J L , PANDEY S , NEUGEBAUER M E , et al.Phage-assisted evolution and protein engineering yield compact, efficient prime editors[J].Cell,2023,186(18):3983-4002.e26.
doi: 10.1016/j.cell.2023.07.039 |
72 |
MOK B Y , KOTRYS A V , RAGURAM A , et al.CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA[J].Nat Biotechnol,2022,40(9):1378-1387.
doi: 10.1038/s41587-022-01256-8 |
73 |
CHO S I , LEE S , MOK Y G , et al.Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases[J].Cell,2022,185(10):1764-1776.e12.
doi: 10.1016/j.cell.2022.03.039 |
74 |
HU J C , SUN Y , LI B S , et al.Strand-preferred base editing of organellar and nuclear genomes using CyDENT[J].Nat Biotechnol,2024,42(6):936-945.
doi: 10.1038/s41587-023-01910-9 |
75 |
VO P L H , RONDA C , KLOMPE S E , et al.CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering[J].Nat Biotechnol,2021,39(4):480-489.
doi: 10.1038/s41587-020-00745-y |
76 |
KLOMPE S E , VO P L H , HALPIN-HEALY T S , et al.Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J].Nature,2019,571(7764):219-225.
doi: 10.1038/s41586-019-1323-z |
77 |
SCHNEIDER A , JEGL P , HAUER B .Stereoselective directed cationic cascades enabled by molecular anchoring in terpene cyclases[J].Angew Chem Int Ed,2021,60(24):13251-13256.
doi: 10.1002/anie.202101228 |
78 |
STRECKER J , LADHA A , GARDNER Z , et al.RNA-guided DNA insertion with CRISPR-associated transposases[J].Science,2019,365(6448):48-53.
doi: 10.1126/science.aax9181 |
79 |
KARVELIS T , DRUTEIKA G , BIGELYTE G , et al.Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease[J].Nature,2021,599(7886):692-696.
doi: 10.1038/s41586-021-04058-1 |
80 |
WANG M , SUN Z L , LIU Y , et al.Hypercompact TnpB and truncated TnpB systems enable efficient genome editing in vitro and in vivo[J].Cell Discov,2024,10(1):31.
doi: 10.1038/s41421-023-00645-w |
81 |
LI Z F , GUO R C , SUN X Z , et al.Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model[J].Nat Commun,2024,15(1):831.
doi: 10.1038/s41467-024-45197-z |
82 |
QU L , YI Z Y , ZHU S Y , et al.Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs[J].Nat Biotechnol,2019,37(9):1059-1069.
doi: 10.1038/s41587-019-0178-z |
83 |
SAITO M , XU P Y , FAURE G , et al.Fanzor is a eukaryotic programmable RNA-guided endonuclease[J].Nature,2023,620(7974):660-668.
doi: 10.1038/s41586-023-06356-2 |
84 |
XU P Y , SAITO M , FAURE G , et al.Structural insights into the diversity and DNA cleavage mechanism of Fanzor[J].Cell,2024,187(19):5238-5252.e20.
doi: 10.1016/j.cell.2024.07.050 |
85 |
LIU Z X , ZHANG S Y , ZHU H Z , et al.Hydrolytic endonucleolytic ribozyme (HYER) is programmable for sequence-specific DNA cleavage[J].Science,2024,383(6682):eadh4859.
doi: 10.1126/science.adh4859 |
86 |
HUANG J Y , LIN Q P , FEI H Y , et al.Discovery of deaminase functions by structure-based protein clustering[J].Cell,2024,187(16):4426-4428.
doi: 10.1016/j.cell.2024.07.003 |
87 |
HE Y , ZHOU X B , CHANG C , et al.Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing[J].Mol Cell,2024,84(7):1257-1270.e6.
doi: 10.1016/j.molcel.2024.01.021 |
[1] | Ruiying LIANG, Jingxia SUO, Lin LIANG, Xianyong LIU, Jiabo DING, Xun SUO, Xinming TANG. Genetic Manipulation of Eimeria: Platform Development, Application, and Perspective [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3362-3373. |
[2] | Wenwen LIU, Faming DONG, Yanzhen BI. The Development of Multi-Gene Editing Technology and Its Application in Agricultural Biological Germplasm Innovation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3267-3275. |
[3] | ZHANG Duo, TENG Man, ZHANG Zhuo, LIU Jinling, ZHENG Luping, GE Siyu, HAN Fang, LUO Qin, CHAI Shujun, ZHAO Dong, YU Zuhua, LUO Jun. Development and Pathogenicity Analysis of a meq-gene-edited Candidate Marek's Disease Vaccine Strain Generated from a Hypervirulent MDV Variant [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5672-5683. |
[4] | Xuefu ZHANG, Yuntong CHEN, Wenrui FAN, Zibo ZHANG, Mengmeng YU, Suyan WANG, Xiaole QI, Liuan LI, Yulong GAO. Construction of Chicken chNHE1 Gene Editing Cell Line and Analysis of Its Resistance to ALV-J Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5238-5246. |
[5] | Xiuhu DING, Zhiping LIN, Fang ZHAO, Kunlin CHEN, Jifeng ZHONG, Yan ZHANG, Yundong GAO, Huixia LI, Huili WANG, Jianli ZHANG, Qiang DING. Highly Efficient BLG Knockout in Bovine Mammary Epithelial Cells by Using CRISPR/Cas9 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4475-4488. |
[6] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[7] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[8] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
[9] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[10] | ZOU Huiying, LI Junliang, ZHU Huabin. Progress on Research and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3721-3730. |
[11] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
[12] | WANG Huan, ZOU Huiying, ZHU Huabin, ZHAO Shanjiang. Advances in Evaluation of Livestock Breeding New Materials by Using the CRISPR/Cas9 Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 851-861. |
[13] | YANG Sen, TENG Man, LIU Jinling, ZHOU Ziyu, ZHENG Luping, CHU Yushu, DING Ke, YU Zuhua, LUO Jun. Construction of meq Deleted strain by Gene Editing of Marek's Disease Vaccine Strain CVI988/Rispens via the CRISPR/Cas9 System and Identification [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1970-1976. |
[14] | SONG Yuhao, LI Dong, SUN Jiangyang, SHI Kun, LI Jianming, ZONG Ying, ZHAO Dan, ZENG Fanli, DU Rui. CRISPR/Cas System and Its Application in the Study of Mycobacterium tuberculosis [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11): 2613-2621. |
[15] | LI Guangdong, ZHANG Lu, FU Juncai, LIAN Zhengxing, LIU Guoshi. Research Progress of Cytosine Base Editor at the Single Base Level [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||