Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4475-4488.doi: 10.11843/j.issn.0366-6964.2024.10.020
• Animal Biotechnology and Reproduction • Previous Articles Next Articles
Xiuhu DING1,2(), Zhiping LIN3, Fang ZHAO1, Kunlin CHEN1, Jifeng ZHONG1, Yan ZHANG4, Yundong GAO4, Huixia LI2, Huili WANG1, Jianli ZHANG1,*(
), Qiang DING1,*(
)
Received:
2024-04-01
Online:
2024-10-23
Published:
2024-11-04
Contact:
Jianli ZHANG, Qiang DING
E-mail:dxh1825047521@163@.com;zhangjianli79@163.com;dingqiang198907@163.com
CLC Number:
Xiuhu DING, Zhiping LIN, Fang ZHAO, Kunlin CHEN, Jifeng ZHONG, Yan ZHANG, Yundong GAO, Huixia LI, Huili WANG, Jianli ZHANG, Qiang DING. Highly Efficient BLG Knockout in Bovine Mammary Epithelial Cells by Using CRISPR/Cas9[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4475-4488.
Table 1
Primers sequence of sgRNAs"
sgRNA序列(5′→3′)(斜体为PAM区) sgRNA sequence (Italic indicate PAM) | 引物序列(5′→3′) sgRNA primers sequence | |
sgRNA1(sg1) | CACCCAGACCATGAAGGGCCTGG | F: ACCGCACCCAGACCATGAAGGGCC R: AAACGGCCCTTCATGGTCTGGGTG |
sgRNA2(sg2) | GCACTTCATGGCTGCAGCTGGGG | F: ACCGGCACTTCATGGCTGCAGCTG R: AAACCAGCTGCAGCCATGAAGTGC |
sgRNA3(sg3) | TGGATATCCAGAAGGTTCGAGGG | F: ACCGTGGATATCCAGAAGGTTCGA R: AAACTCGAACCTTCTGGATATCCA |
Table 2
The primers sequence for in vitro transcription"
名称 Name | 引物序列(5′→3′) Primers sequence |
IVT-sg1-F | $\underline{{\rm{TAATACGACTCACACTATA}}}$CACCCAGACCATGAAGGGCC |
IVT-sg1-R | AAAAGCACCGACTCGGTGCC |
IVT-sg2-F | $\underline{{\rm{TAATACGACTCACACTATA}}}$GGCACTTCATGGCTGCAGCTG |
IVT-sg2-R | AAAAGCACCGACTCGGTGCC |
IVT-sg3-F | $\underline{{\rm{TAATACGACTCACACTATA}}}$GTGGATATCCAGAAGGTTCGA |
IVT-sg3-R | AAAAGCACCGACTCGGTGCC |
Table 4
The information of off-target sites"
潜在脱靶位点 Potential off-target site | 潜在脱靶位点序列(5′→3′) Potential off-target site sequence | 方向 Direction | 错配碱基 Mismatched bases | 染色体 Chromosome |
sgRNA1 | CACCCAGACCATGAAGGGCCTGG | |||
sg1-OT-1 | gACCCAGACCATtAAGGGCCGGG | + | 2MMS (1:13) | chr4 |
sg1-OT-2 | gACCCAGtCCATGAAGGGCCTGG | + | 2MMS (1:8) | chr14 |
sg1-OT-3 | CtCCCAGACCAgGAAGGtCCAGG | + | 3MMS (2:12:18) | chr17 |
sg1-OT-4 | CACCCAaACCAaGAAGaGCCAGG | + | 3MMS (7:12:17) | chr3 |
sg1-OT-5 | gAgCCAGACCATaAAGGGCCTGG | + | 3MMS (1:3:13) | chr2 |
sgRNA3 | TGGATATCCAGAAGGTTCGAGGG | |||
sg3-OT1 | TGGATATCCAGgAGGTTaGAGGG | + | 2MMS (12:18) | chr18 |
sg3-OT2 | gGGAaATCCAGAAGGTTtGAAGG | + | 3MMS (1:5:17) | chr8 |
sg3-OT3 | TtGATATCCAGAAGGTTgtAAGG | + | 3MMS (2:18:19) | chr15 |
sg3-OT4 | TGGAcATCCtGAAGGTTaGAAGG | - | 3MMS (5:10:18) | chr5 |
sg3-OT5 | TGGATAcCCAGtAGGgTCGAAGG | + | 3MMS (7:12:16) | chr24 |
Table 5
The detection primers sequence of off-target sites"
靶位点 Target site | 引物序列(5′→3′) Primers sequence | 产物大小/bp Product size | |
上游引物 Forward | 下游引物 Reverse | ||
sg1-OT-1 | GTGCAAATCTTCATCCATGCTG | AGGCCTCTGTTTCTCATCACA | 511 |
sg1-OT-2 | AGCGTCGCAGAAATCAGAAC | TCCCTAGTGGCTAAGATGGTAAA | 410 |
sg1-OT-3 | ACTCTTACAGGTGGTTGGTTTGC | TGGTCCTGCCATGCTGATT | 418 |
sg1-OT-4 | TGGCTGGGTATCACATGCAG | GGGAGACGTCAATCGTGGTT | 481 |
sg1-OT-5 | GCCAGGCCTTACACACTACA | TCCCCTCCTGGTTTGAGTCT | 349 |
sg3-OT-1 | TGCTCAGCCCCACTATCTCC | CCATAGACGGCAGCCCAAT | 334 |
sg3-OT-2 | ACCCATTTGTTCATCCATCTCC | TGTCCTCCCCTTCCATCTTT | 416 |
sg3-OT-3 | AATGGCAAGCCCCTCCT | AGCCCATTCTTTCCTCAGTTT | 410 |
sg3-OT-4 | GACTTCAGGCCCTGTCCTTG | TGCCTGTAAGATGAGTGTGGG | 504 |
sg3-OT-5 | AGGCAGGGTTTTAGGTTTCC | ATTCTCCTCCTTAACATGGGTG | 373 |
Table 7
Statistical analysis of editing types of different monoclonal cell lines"
编号 Number | sgRNA1 | sgRNA3 | 编辑类型 Type | 移码 Frameshift |
WT | CACCCAGACCATGAAGGGCC | TGGATATCCAGAAGGTTCGA | ||
1 | CACCCAGACCATGAAGGGGCC | gGaAaATCCAGAAGGTTTCGA | +2 bp | 3n+2 |
2 | CACCCAGACCgTGAA------ | ------TGCACAGGGT------ | -19 bp | 3n+2 |
3 | CACCCAGACCATGAAGGGGCC | gGaATATCCAGAAGGTTTCGA | +2 bp | 3n+2 |
4&8 | -------------------- | -------------------- | 大片段缺失 | |
6 | CACCCAGACCATGAAGGGGCC | cGGTATCCCAgAAGGTTTCaA | +3 bp | 3n |
7 | CACCCAGACCATGAAGGGCC | TGGATATCCAGgAccggCGA | 3n | |
9 | CACCCAGACCATGAAGGGCC | TGGATATTCCgGAgGGTGTCGA | +2 bp | 3n+2 |
10 | CACCCAGACCATGAA------ | --------------------- | 大片段缺失 |
Table 8
Use T-A clone to detect the editing type of cell line"
编号 Number | sgRNA1 | sgRNA3 | 插入编辑类型 Indes forms | 移码 Frameshift | 占比 Proportion |
WT | CACCCAGACCATGAAGGGCC | TGGATATCCAGAAGGTTCGA | wild type | ||
2-1 | CACCCAGACCATG----- | CCTGGATATCCAGAAaa-- | -5 bp | 3n+2 | 1/12 |
2-2 | CACCCAGACCATGAAGGGCC | CCTGGATATCCAGAAGGTT | 5/12 | ||
2-3 | CACCCAG-------------CC | TGGATATCCAGAAGGT---- | -17 bp | 3n+2 | 2/12 |
2-4 | CACCCAGACCATG-----CC | TGGATATCCAGAAG--TCGA | -7 bp | 3n+2 | 1/12 |
2-5 | CACCCAGACCATGAAGGGCC | TGGATATCC----------- | -11 bp | 3n+2 | 1/12 |
2-6 | CACCCAGACCATGAAGGGGCC | TGGATATCCAGAAGGTTTCGA | +2 bp | 3n+2 | 1/12 |
2-7 | CgCCCAG-----------CC | TGGATATCCAGAAGGT---- | -15 bp | 3n | 1/12 |
8-1 | ------------------------ | ------------------------ | 大片段缺失 | 12/12 | |
10-1 | CACCCAGACCATGAAG--CC | TGGATATCCAGAAGGTTTCG | -1 bp | 3n+1 | 4/12 |
10-2 | CACCCAGACCATGAAGGGCC | TGGATATCCAGAAGGTTCGA | 1/12 | ||
10-3 | CACCCAGACCATG----GCC | TGGATATCCAGAAGGTTTCGA | -3 bp | 3n | 3/12 |
10-4 | CACCCAGACCATG----GCC | TGGATATCCAGAAGGGTTCGA | -3 bp | 3n | 1/12 |
1 |
HOCHWALLNERH,SCHULMEISTERU,SWOBODAI,et al.Cow's milk allergy: from allergens to new forms of diagnosis, therapy and prevention[J].Methods,2014,66(1):22-33.
doi: 10.1016/j.ymeth.2013.08.005 |
2 |
LEMOSL,ASSISH C,ALVESJ L,et al.Neuroimmune circuits involved in β-lactoglobulin-induced food allergy[J].Brain Behav Immun Health,2022,23,100471.
doi: 10.1016/j.bbih.2022.100471 |
3 |
SCHOEMAKERA A,SPRIKKELMANA B,GRIMSHAWK E,et al.Incidence and natural history of challenge-proven cow's milk allergy in European children—EuroPrevall birth cohort[J].Allergy,2015,70(8):963-972.
doi: 10.1111/all.12630 |
4 |
GAIN,UNIACKE-LOWET,O'REGANJ,et al.Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: a review[J].Foods,2021,10(10):2409.
doi: 10.3390/foods10102409 |
5 |
GIANNETTIA,TOSCHI VESPASIANIG,RICCIG,et al.Cow's milk protein allergy as a model of food allergies[J].Nutrients,2021,13(5):1525.
doi: 10.3390/nu13051525 |
6 |
ABD EL-SALAMM H,EL-SHIBINYS.Preparation, properties, and uses of enzymatic milk protein hydrolysates[J].Crit Rev Food Sci Nutr,2017,57(6):1119-1132.
doi: 10.1080/10408398.2014.899200 |
7 | 王明礼,钱珊珊,李艾黎,等.降低牛乳致敏性方法的研究进展[J].中国乳品工业,2021,49(7):25-31. |
WANGM L,QIANS S,LIA L,et al.Research progress on methods of reducing allergenicity of milk[J].China Dairy Industry,2021,49(7):25-31. | |
8 | 吴雯倩,左姣丽,肖冰,等.热处理对蛋白质的影响[J].食品安全导刊,2015,(36):45. |
WUW Q,ZUOJ L,XIAOB,et al.Effect of heat treatment on proteins[J].China Food Safety Magazine,2015,(36):45. | |
9 |
HATTORIM,MIYAKAWAS,OHAMAY,et al.Reduced immunogenicity of β-lactoglobulin by conjugation with acidic oligosaccharides[J].J Agric Food Chem,2004,52(14):4546-4553.
doi: 10.1021/jf0353887 |
10 |
LIUY,COTTLEW T,HAT.Mapping cellular responses to DNA double-strand breaks using CRISPR technologies[J].Trends Genet,2023,39(7):560-574.
doi: 10.1016/j.tig.2023.02.015 |
11 |
BUW,CREIGHTONC J,HEAVENERK S,et al.Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice[J].Sci Adv,2023,9(19):eade0059.
doi: 10.1126/sciadv.ade0059 |
12 |
WANGY,QIT,LIUJ T,et al.A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing[J].Sci Adv,2023,9(6):eabo6405.
doi: 10.1126/sciadv.abo6405 |
13 |
CONGL,RANF A,COXD,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.
doi: 10.1126/science.1231143 |
14 |
ZHANGX M,LIW R,WUY S,et al.Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos[J].Theriogenology,2017,91,163-172.
doi: 10.1016/j.theriogenology.2016.10.025 |
15 |
WANGX L,NIUY Y,ZHOUJ K,et al.Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J].Sci Rep,2016,6,32271.
doi: 10.1038/srep32271 |
16 |
CRISPOM,MULETA P,TESSONL,et al.Efficient generation of Myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].PLoS One,2015,10(8):e0136690.
doi: 10.1371/journal.pone.0136690 |
17 |
ZHOUS W,KALDSP,LUOQ,et al.Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality[J].BMC Genomics,2022,23(1):348.
doi: 10.1186/s12864-022-08594-6 |
18 |
LIW R,LIUC X,ZHANGX M,et al.CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J].FEBS J,2017,284(17):2764-2773.
doi: 10.1111/febs.14144 |
19 |
ZHOUW J,WANY J,GUOR H,et al.Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9[J].PLoS One,2017,12(10):e0186056.
doi: 10.1371/journal.pone.0186056 |
20 | 李炜杰,杨娇,王聪慧,等.电转液L对绵羊成纤维细胞电转染条件优化[J].新疆农业科学,2015,52(8):1481-1485. |
LIW J,YANGJ,WANGC H,et al.Optimization of an electrotransfer solution-L for Ovis Aries fibroblasts[J].Xinjiang Agricultural Sciences,2015,52(8):1481-1485. | |
21 | 董海龙,吴琼,刘明超,等.奶牛乳腺上皮细胞的体外分离培养及超微结构鉴定[J].中国兽医学报,2016,36(10):1763-1768. |
DONGH L,WUQ,LIUM C,et al.Inprimary culture and ultrastructural changes of bovine mammary epithelial cells[J].Chinese Journal of Veterinary Science,2016,36(10):1763-1768. | |
22 |
BAES,PARKJ,KIMJ S.Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases[J].Bioinformatics,2014,30(10):1473-1475.
doi: 10.1093/bioinformatics/btu048 |
23 |
YUS L,LUOJ J,SONGZ Y,et al.Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle[J].Cell Res,2011,21(11):1638-1640.
doi: 10.1038/cr.2011.153 |
24 | 崔趁趁. TALEN介导的β-乳球蛋白基因敲除奶山羊的生产[D]. 杨凌: 西北农林科技大学, 2015. |
CUI C C. TALEN-mediated gene targeting of the β-lactoglobulin gene in goat[D]. Yangling: Northwest A&F University, 2015. (in Chinese) | |
25 | 周文君. 利用CRISPR/Cas9技术敲除山羊BLG基因与定点整合hLF基因的研究[D]. 南京: 南京农业大学, 2017. |
ZHOU W J. Knocking out goat BLG gene and intergration of hLF site-specifically using CRISP/Cas9 technology[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) | |
26 | 张曼. 奶山羊BLG基因调控序列指导的乳腺特异性表达载体的构建和优化[D]. 杨凌: 西北农林科技大学, 2015. |
ZHANG M. Construction and optimizing of gland-specific expression vector by dairy goat BLG gene regulatory elements[D]. Yangling: Northwest A&F University, 2015. (in Chinese) | |
27 | 丁修虎, 丁强, 王悦, 等. 利用胞嘧啶碱基编辑器高效制备奶牛BLG基因敲除胚胎的研究[J/OL]. 南京农业大学学报, 1-10[2024-04-10]. http://kns.cnki.net/kcms/detail/32.1148.S.20240507.1850.008.html. |
DING X H, DING Q, WANG Y, et al. Highly efficient BLG gene knock out using base editors in cattle embryos[J/OL]. Journal of Nanjing Agricultural University, 1-10[2024-04-10]. http://kns.cnki.net/kcms/detail/32.1148.S.2240507.1850.008.html. (in Chinese) | |
28 | 张家翔,韩佃刚,师亚玲,等.利用CRISPR/Cas9技术构建PPARγ基因敲除的IPEC-J2细胞系[J].中国畜牧兽医,2023,50(7):2670-2677. |
ZHANGJ X,HANGD G,SHIY L,et al.Construction of IPEC-J2 cell lines with PPARγ gene knockout mediated by CRISPR/Cas9 technology[J].China Animal Husbandry & Veterinary Medicine,2023,50(7):2670-2677. | |
29 |
LIJ,KONGD L,KEY P,et al.Application of multiple sgRNAs boosts efficiency of CRISPR/Cas9-mediated gene targeting in Arabidopsis[J].BMC Biol,2024,22(1):6.
doi: 10.1186/s12915-024-01810-7 |
30 | 杨花,刘孜斐,吕文莉,等.基于CRISPR/Cas9系统构建绵羊VASA基因敲入载体及验证[J].生物工程学报,2023,39(10):4219-4233. |
YANGH,LIUZ F,LÜW L,et al.Construction and validation of sheep VASA gene knock-in vector based on CRISPR/Cas9 system[J].Chinese Journal of Biotechnology,2023,39(10):4219-4233. | |
31 |
ZHANGY R,YINT L,ZHOUL Q.CRISPR/Cas9 technology: applications in oocytes and early embryos[J].J Transl Med,2023,21(1):746.
doi: 10.1186/s12967-023-04610-9 |
32 |
张晨俭,李隐侠,丁强,等.CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J].畜牧兽医学报,2024,55(1):129-141.
doi: 10.11843/j.issn.0366-6964.2024.01.014 |
ZHANGC J,LIY X,DINGQ,et al.Efficient preparation of CRISPR/Cas9-mediated goat SOCS2 gene edited embryos[J].Acta Veterinaria et Zootechnica Sinica,2024,55(1):129-141.
doi: 10.11843/j.issn.0366-6964.2024.01.014 |
|
33 | ZHANGX H,TEEL Y,WANGX G,et al.Off-target effects in CRISPR/Cas9-mediated genome engineering[J].Mol Ther Nucleic Acids,2015,4(11):e264. |
34 |
CHENX Y,XUF,ZHUC M,et al.Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans[J].Sci Rep,2014,4(1):7581.
doi: 10.1038/srep07581 |
35 |
DOENCHJ G,FUSIN,SULLENDERM,et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J].Nat Biotechnol,2016,34(2):184-191.
doi: 10.1038/nbt.3437 |
36 |
SMITHC,GOREA,YANW,et al.Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs[J].Cell Stem Cell,2014,15(1):12-13.
doi: 10.1016/j.stem.2014.06.011 |
37 | MAS Y,WANGA M,CHENX X,et al.Deep sequencing reveals the comprehensive CRISPR-Cas9 editing spectrum in Bombyx mori[J].CRISPR J,2021,4(3):371-380. |
38 | WANGD Q,ZHANGC D,WANGB,et al.Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning[J].Nat Commun,2019,10(1):4284. |
39 | HENDELA,BAKR O,CLARKJ T,et al.Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells[J].Nat Biotechnol,2015,33(9):985-989. |
40 | TAIC S,CHENY Y,CHENW L.β-Lactoglobulin influences human immunity and promotes cell proliferation[J].Biomed Res Int,2016,2016,7123587. |
[1] | Wenwen LIU, Faming DONG, Yanzhen BI. The Development of Multi-Gene Editing Technology and Its Application in Agricultural Biological Germplasm Innovation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3267-3275. |
[2] | Ruiying LIANG, Jingxia SUO, Lin LIANG, Xianyong LIU, Jiabo DING, Xun SUO, Xinming TANG. Genetic Manipulation of Eimeria: Platform Development, Application, and Perspective [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3362-3373. |
[3] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[4] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[5] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[6] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[7] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[8] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[9] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
[10] | DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79. |
[11] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[12] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[13] | SUN Peihao, ZHAO Xinzhe, WU Hanxiao, LÜ Ce, YANG Liguo, LIANG Aixin. Primary Culture and Biological Characteristics Analysis of Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 447-458. |
[14] | ZOU Huiying, LI Junliang, ZHU Huabin. Progress on Research and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3721-3730. |
[15] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||