Acta Veterinaria et Zootechnica Sinica ›› 2021, Vol. 52 ›› Issue (4): 851-861.doi: 10.11843/j.issn.0366-6964.2021.04.001
• REVIEW • Previous Articles Next Articles
WANG Huan, ZOU Huiying, ZHU Huabin, ZHAO Shanjiang*
Received:
2020-07-30
Online:
2021-04-23
Published:
2021-04-25
CLC Number:
WANG Huan, ZOU Huiying, ZHU Huabin, ZHAO Shanjiang. Advances in Evaluation of Livestock Breeding New Materials by Using the CRISPR/Cas9 Gene Editing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 851-861.
[1] | RAN F A,CONG L,YAN W X,et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015,520(7546):186-191. |
[2] | CHYLINSKI K,MAKAROVA K S,CHARPENTIER E,et al.Classification and evolution of type II CRISPR-Cas systems[J].Nucleic Acids Res,2014,42(10):6091-6105. |
[3] | ISHINO Y,KRUPOVIC M,FORTERRE P.History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology[J].J Bacteriol,2018,200(7):e00580-17. |
[4] | HRYHOROWICZ M,LIPIŃSKI D,ZEYLAND J,et al.CRISPR/Cas9 immune system as a tool for genome engineering[J].Arch Immunol Ther Exp (Warsz),2017,65(3):233-240. |
[5] | ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].J Bacteriol,1987,169(12):5429-5433. |
[6] | MOJICA F J M,DÍEZ-VILLASEÑOR C,SORIA E,et al.Biological significance of a family of regularly spaced repeats in the genomes of Archaea,Bacteria and mitochondria[J].Mol Microbiol,2000,36(1):244-246. |
[7] | MAKAROVA K S,ARAVIND L,WOLF Y I,et al.Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems[J].Biol Direct,2011,6:38. |
[8] | GASIUNAS G,BARRANGOU R,HORVATH P,et al.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J].Proc Natl Acad Sci U S A,2012,109(39):E2579-E2586. |
[9] | ZHOU Y X,ZHU S Y,CAI C Z,et al.High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells[J].Nature,2014,509(7501):487-491. |
[10] | XU C L,QI X L,DU X G,et al.piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice[J].Proc Natl Acad Sci U S A,2017,114(4):722-727. |
[11] | KLEINSTIVER B P,PATTANAYAK V,PREW M S,et al.High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J].Nature,2016,529(7587):490-495. |
[12] | SLAYMAKER I M,GAO L Y,ZETSCHE B,et al.Rationally engineered Cas9 nucleases with improved specificity[J].Science,2016,351(6268):84-88. |
[13] | FU Y F,SANDER J D,REYON D,et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J].Nat Biotechnol,2014,32(3):279-284. |
[14] | HSU P D,SCOTT D A,WEINSTEIN J A,et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J].Nat Biotechnol,2013,31(9):827-832. |
[15] | HOU Z G,ZHANG Y,PROPSON N E,et al.Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis[J].Proc Natl Acad Sci U S A,2013,110(39):15644-15649. |
[16] | AMRANI N,GAO X D,LIU P P,et al.NmeCas9 is an intrinsically high-fidelity genome-editing platform[J].Genome Biol,2018,19(1):214. |
[17] | TREVINO A E,ZHANG F.Genome editing using Cas9 nickases[J].Methods Enzymol,2014,546:161-174. |
[18] | BROCKEN D J W,TARK-DAME M,DAME R T.dCas9:A versatile tool for epigenome editing[J].Curr Issues Mol Biol,2018, 26:15-32. |
[19] | NIHONGAKI Y,YAMAMOTO S,KAWANO F,et al.CRISPR-Cas9-based photoactivatable transcription system[J].Chem Biol, 2015, 22(2):169-174. |
[20] | HEMPHILL J,BORCHARDT E K,BROWN K,et al.Optical control of CRISPR/Cas9 gene editing[J].J Am Chem Soc,2015, 137(17):5642-5645. |
[21] | BARMAN A,DEB B,CHAKRABORTY S.A glance at genome editing with CRISPR-Cas9 technology[J].Curr Genet,2020,66(3):447-462. |
[22] | KOMOR A C,KIM Y B,PACKER M S,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424. |
[23] | GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature,2017,551(7681):464-471. |
[24] | ZUO E W,SUN Y D,WEI W,et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J].Science,2019,364(6437):289-292. |
[25] | JIN S,ZONG Y,GAO Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science, 2019,364(6437):292-295. |
[26] | GEHRKE J M,CERVANTES O,CLEMENT M K,et al.An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J].Nat Biotechnol,2018,36(10):977-982. |
[27] | WANG X J,LIU Z W,LI G L,et al.Efficient gene silencing by adenine base editor-mediated start codon mutation[J].Mol Ther, 2020,28(2):431-440. |
[28] | ANZALONE A V,RANDOLPH P B,DAVIS J R,et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature,2019,576(7785):149-157. |
[29] | 冯万有.基于CRISPR/Cas9系统靶向敲除水牛BMP15和GDF9基因的研究[D].南宁:广西大学,2015.FENG W Y.Targeted editing buffalo BMP15 and GDF9 via CRISPR/Cas9 system[D].Nanning:Guangxi University,2015.(in Chinese) |
[30] | INOUE K,KOHDA T,SUGIMOTO M,et al.Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer[J].Science,2010,330(6003):496-499. |
[31] | MATOBA S,INOUE K,KOHDA T,et al.RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos[J].Proc Natl Acad Sci U S A,2011,108(51):20621-20626. |
[32] | YOUNIS S,SCHÖNKE M,MASSART J,et al.The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals[J].Proc Natl Acad Sci U S A,2018,115(9):E2048-E2057. |
[33] | XIANG G H,REN J L,HAI T,et al.Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J].Cell Mol Life Sci,2018,75(24):4619-4628. |
[34] | LIU X F,LIU H B,WANG M,et al.Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J].Transgenic Res,2019,28(1):141-150. |
[35] | MCPHERRON A C,LEE S J.Double muscling in cattle due to mutations in the myostatin gene[J].Proc Natl Acad Sci U S A,1997,94(23):12457-12461. |
[36] | HE Z Y,ZHANG T,JIANG L,et al.Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats[J].Biosci Rep,2018,38(6):BSR20180742. |
[37] | NI W,QIAO J,HU S W,et al.Efficient gene knockout in goats using CRISPR/Cas9 system[J].PLoS One,2014,9(9):e106718. |
[38] | WANG X L,YU H H,LEI A M,et al.Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J].Sci Rep,2015,5:13878. |
[39] | 张驹.CRISPR/Cas9系统介导羊MSTN基因敲除和定点整合fat-1基因的研究[D].呼和浩特:内蒙古大学,2016.ZHANG J.Generation of MSTN gene knock-out and fat-1 gene knock-in goat via CRISPER/Cas9[D].Huhhot:Inner Mongolia University,2016.(in Chinese) |
[40] | WANG X,NIU Y,ZHOU J,et al.CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J].Anim Genet,2018,49(1):43-51. |
[41] | 尉翔栋,吕晨晨,朱肖亭,等.利用CRISPR-Cas9基因编辑技术制备牛MSTN基因编辑胚胎[J].河南农业科学,2019,48(2):131-136.WEI X D,Lü C C,ZHU X T,et al.Preparation of bovine MSTN gene edited embryos using CRISPR/Cas9 gene editing technology[J].Journal of Henan Agricultural Sciences,2019,48(2):131-136.(in Chinese) |
[42] | ZHANG X M,LI W R,LIU C X,et al.Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9[J].Sci Rep,2017,7(1):8149. |
[43] | CARLSON D F,LANCTO C A,ZANG B,et al.Production of hornless dairy cattle from genome-edited cell lines[J].Nat Biotechnol,2016,34(5):479-481. |
[44] | 谷明娟,高丽,周新宇,等.蒙古牛无角POLLED位点的定点编辑[J].农业生物技术学报,2020,28(2):242-250.GU M J,GAO L,ZHOU X Y,et al.Targeted editing of hornless POLLED locus in Mongolia cattle (Bos taurus)[J].Journal of Agricultural Biotechnology,2020,28(2):242-250.(in Chinese) |
[45] | BEVACQUA R J,FERNANDEZ-MARTÍN R,SAVY V,et al.Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system[J].Theriogenology,2016,86(8):1886-1896.e1. |
[46] | GAO Y P,WU H B,WANG Y S,et al.Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J].Genome Biol,2017,18(1):13. |
[47] | LUNNEY J K,FANG Y,LADINIG A,et al.Porcine reproductive and respiratory syndrome virus (PRRSV):Pathogenesis and interaction with the immune system[J].Annu Rev Anim Biosci,2016,4:129-154. |
[48] | ZHANG Q Z,YOO D.PRRS virus receptors and their role for pathogenesis[J].Vet Microbiol,2015,177(3-4):229-241. |
[49] | CHEN J Y,WANG H T,BAI J H,et al.Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J].Int J Biol Sci,2019,15(2):481-492. |
[50] | XIE Z C,PANG D X,YUAN H M,et al.Genetically modified pigs are protected from classical swine fever virus[J].PLoS Pathog,2018,14(12):e1007193. |
[51] | 冷烨.CRISPR/Cas9基因编辑技术在动物疾病模型构建的应用[J].中国畜禽种业,2020,16(1):44-45.LENG Y.Application of CRISPR/Cas9 gene editing technology in animal disease model constrnction[J]. The Chinese Livestock and Poultry Breeding, 2020,16(1):44-45. (in Chinese) |
[52] | HAI T,TENG F,GUO R F,et al.One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J].Cell Res,2014,24(3):372-375. |
[53] | HUANG L,HUA Z D,XIAO H W,et al.CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels[J].Oncotarget,2017,8(23):37751-37760. |
[54] | YAN S,TU Z C,LIU Z M,et al.A Huntingtin Knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J].Cell,2018,173(4):989-1002.e13. |
[55] | ZHU X X,ZHONG Y Z,GE Y W,et al.CRISPR/Cas9-mediated generation of Guangxi Bama Minipigs harboring three mutations in α-Synuclein causing Parkinson's disease[J].Sci Rep,2018,8(1):12420. |
[56] | NIU D,WEI H J,LIN L,et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J].Science, 2017, 357(6357):1303-1307. |
[57] | 戴学宇,张乾义,徐璐,等.CRISPR/Cas9基因编辑技术在重要猪病毒病防控中的研究与应用[J].畜牧兽医学报, 2020,51(5):943-951.DAI X Y,ZHANG Q Y,XU L,et al.Research progress and application of CRISPR/Cas9 gene editing technology in prevention and control of important swine virus diseases[J].Acta Veterinaria et Zootechnica Sinica,2020,51(5):943-951.(in Chinese) |
[58] | 刘思远,卢丹,唐中林.CRISPR/Cas9技术及其在猪基因编辑中的应用[J].畜牧兽医学报,2020,51(3):409-416.LIU S Y,LU D,TANG Z L.Research progress on CRISPR/Cas9 and its application in pigs genome editing[J].Acta Veterinaria et Zootechnica Sinica,2020,51(3):409-416.(in Chinese) |
[59] | PENG Q,FANG L R,DING Z,et al.Rapid manipulation of the porcine epidemic diarrhea virus genome by CRISPR/Cas9 technology[J].J Virol Methods,2020,276:113772. |
[60] | WHITWORTH K M,LEE K,BENNE J A,et al.Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J].Biol Reprod,2014,91(3):78. |
[61] | YANG H Q,WU Z F.Genome editing of pigs for agriculture and biomedicine[J].Front Genet,2018,9:360. |
[1] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[2] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[3] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[4] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[5] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[6] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[7] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
[8] | DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79. |
[9] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[10] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[11] | ZOU Huiying, LI Junliang, ZHU Huabin. Progress on Research and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3721-3730. |
[12] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
[13] | WANG Pei, WANG Meng, LI Tingting, ZHENG Xiaonan, LIANG Qinli, CHEN Xiaoqing. Generation and Basic Functional Characterization of Four Hypothetical Protein Genes Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3598-3608. |
[14] | LI Chen, HE Wenfeng, ZHAO Lina, FAN Qi, YANG Guoqing, LIU Huimin. Effect of Interferon Stimulated Gene 15 Knockout in PK-15 Cell Line on Replication of Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3621-3630. |
[15] | WANG Shengnan, WANG Dandan, TIAN Wenjie, PU Yabin, PAN Dengke, XING Xiangyang, MA Yuehui, JIANG Lin. Mechanism of ZBED6 Gene on Spleen Development of Bama Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2394-2405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||