Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (8): 3267-3275.doi: 10.11843/j.issn.0366-6964.2024.08.001
• Review • Previous Articles Next Articles
Wenwen LIU1,2(), Faming DONG1,*(
), Yanzhen BI2,3,*(
)
Received:
2024-01-08
Online:
2024-08-23
Published:
2024-08-28
Contact:
Faming DONG, Yanzhen BI
E-mail:1512513865@qq.com;756146646@qq.com;sukerbyz@126.com
CLC Number:
Wenwen LIU, Faming DONG, Yanzhen BI. The Development of Multi-Gene Editing Technology and Its Application in Agricultural Biological Germplasm Innovation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3267-3275.
Fig. 1
Establishment of multiple U6 promoter tandem sgRNA expression cassettes The strategy of U6 promoter tandem sgRNA expression cassette targeting multiple sites at the same time is described. The strategy is composed of tandem U6-sgRNA units. Each sgRNA contains a target-specific spacer (represented by different color diamonds) and a conserved sgRNA skeleton (represented by yellow rectangles). The U6 promoter is represented by a blue rectangle. Each U6 promoter is transcribed to release mature sgRNA, which guides Cas9 to target multiple sites"
Fig. 2
Schematic diagram of tRNA-mediated polycistronic sgRNA processing The PTG/Cas9 strategy diagram targeting multiple sites at the same time shows that the PTG straegy consists of a series of tRNA-gRNA units, each gRNA contains a target-specific spacer (represented by different color diamonds) and a conserved gRNA skeleton (represented by a rectangle), tRNA is represented by a rounded rectangle containing A and B elements, and the primary transcript of PTG is cleaved by endogenous RNase P and RNase Z (labeled as scissors) to release mature gRNAs and tRNA (clover leaf structure brown line). The cleavage and release of mature gRNA will guide Cas9 to target multiple sites"
Fig. 3
The schematic diagram of polycistronic sgRNA processing mediated by nuclease Csy4 was established The polycistronic sgRNA processing maturation strategy mediated by nuclease Csy4 is illustrated. This strategy consists of tandemly arranged Csy4-gRNA units. Each gRNA contains a target-specific spacer (represented by different color diamonds) and a conserved gRNA skeleton (represented by a yellow rectangle). Csy4 is represented by a red ellipse. Csy4 cleaves and releases mature gRNA, guiding Cas9 to target multiple sites at the same time"
Fig. 4
Establishment of a schematic diagram of polycistronic sgRNA processing mediated by self-cleaving ribozyme The self-cleaving ribozyme-mediated polycistronic sgRNA processing maturation strategy is illustrated. The strategy consists of a tandem arrangement of HH-gRNA-HDV units. Each gRNA contains a target-specific spacer (represented by different color diamonds) and a conserved gRNA skeleton (represented by a yellow rectangle). HH is represented by a white rectangle, and HDV is represented by a gray rectangle. Under the combined action of HH ribozyme installed at the 5′ end and HDV ribozyme installed at the 3′ end, mature gRNA is cleaved and released, guiding Cas9 to target multiple sites at the same time"
1 |
VAN DER OOST J , PATINIOS C . The genome editing revolution[J]. Trends Biotechnol, 2023, 41 (3): 396- 409.
doi: 10.1016/j.tibtech.2022.12.022 |
2 |
KIM Y G , CHA J , CHANDRASEGARAN S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A, 1996, 93 (3): 1156- 1160.
doi: 10.1073/pnas.93.3.1156 |
3 |
CHRISTIAN M , CERMAK T , DOYLE E L , et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186 (2): 757- 761.
doi: 10.1534/genetics.110.120717 |
4 |
MILLER J C , TAN S Y , QIAO G J , et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011, 29 (2): 143- 148.
doi: 10.1038/nbt.1755 |
5 |
CONG L , RAN F A , COX D , et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339 (6121): 819- 823.
doi: 10.1126/science.1231143 |
6 |
DONOHOUE P D , BARRANGOU R , MAY A P . Advances in industrial biotechnology using CRISPR-cas systems[J]. Trends Biotechnol, 2018, 36 (2): 134- 146.
doi: 10.1016/j.tibtech.2017.07.007 |
7 |
张佳珊, 谭韬. CRISPR-Cas9系统编辑DNA诱导基因敲除的发展及优缺点[J]. 中国免疫学杂志, 2019, 35 (6): 767- 770.
doi: 10.3969/j.issn.1000-484X.2019.06.025 |
ZHANG J S , TAN T . Development of CRISPR-Cas9 system edit DNA and induce targeted knockout as well advantages and disadvantages[J]. Chinese Journal of Immunology, 2019, 35 (6): 767- 770.
doi: 10.3969/j.issn.1000-484X.2019.06.025 |
|
8 | 于海颖, 路永强, 张鲁, 等. CRISPR/Cas9系统在基因编辑猪生产中的应用[J]. 黑龙江动物繁殖, 2022, 30 (1): 34- 40. |
YU H Y , LU Y Q , ZHANG L , et al. Application of the CRISPR/Cas9 system to produce gene-edited pigs[J]. Heilongjiang Journal of Animal Reproduction, 2022, 30 (1): 34- 40. | |
9 |
MIYAGAWA S , MATSUNARI H , WATANABE M , et al. Generation of α1, 3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs[J]. J Reprod Dev, 2015, 61 (5): 449- 457.
doi: 10.1262/jrd.2015-058 |
10 |
RICHTER A , KUROME M , KESSLER B , et al. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig[J]. BMC Biotechnol, 2012, 12, 84.
doi: 10.1186/1472-6750-12-84 |
11 |
SUZUKI S , IWAMOTO M , SAITO Y , et al. Il2rg gene-targeted severe combined immunodeficiency pigs[J]. Cell Stem Cell, 2012, 10 (6): 753- 758.
doi: 10.1016/j.stem.2012.04.021 |
12 |
GUO X C , GENG L S , JIANG C Q , et al. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9[J]. Anim Biotechnol, 2023, 34 (9): 4703- 4712.
doi: 10.1080/10495398.2023.2187402 |
13 |
DONG F P , XIE K B , CHEN Y Y , et al. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells[J]. Biochem Biophys Res Commun, 2017, 482 (4): 889- 895.
doi: 10.1016/j.bbrc.2016.11.129 |
14 | 樊祥瑞, 王俊燕, 梁丽亚, 等. 基于CRISPR/Cas系统的多重基因编辑与调控技术[J]. 生物工程学报, 2023, 39 (6): 2449- 2464. |
FAN X R , WANG J Y , LIANG L Y , et al. Multiplex gene editing and regulation techniques based on CRISPR/Cas system[J]. Chinese Journal of Biotechnology, 2023, 39 (6): 2449- 2464. | |
15 | 郎楠, 梁洛瑜, 汪军丽, 等. CRISPR-Cas9多基因编辑技术在植物研究中的应用[J]. 分子植物育种, 2023, 21 (8): 2665- 2670. |
LANG N , LIANG L Y , WANG J L , et al. Application of CRISPR-Cas9 enabled multiplex gene editing in plant research[J]. Molecular Plant Breeding, 2023, 21 (8): 2665- 2670. | |
16 |
FENG X , ZHAO D D , ZHANG X L , et al. CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli[J]. Biotechnol J, 2018, 13 (9): e1700604.
doi: 10.1002/biot.201700604 |
17 |
GUO X C , GENG L S , JIANG C Q , et al. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9[J]. Anim Biotechnol, 2023, 34 (9): 4703- 4712.
doi: 10.1080/10495398.2023.2187402 |
18 |
SAKUMA T , NISHIKAWA A , KUME S , et al. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system[J]. Sci Rep, 2014, 4, 5400.
doi: 10.1038/srep05400 |
19 | ALOK A , CHAUHAN H , UPADHYAY S K , et al. Compendium of plant-specific CRISPR vectors and their technical advantages[J]. Life (Basel), 2021, 11 (10): 1021. |
20 | 王秉政, 张超, 张佳丽, 等. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45 (7): 593- 601. |
WANG B Z , ZHANG C , ZHANG J L , et al. Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA[J]. Hereditas (Beijing), 2023, 45 (7): 593- 601. | |
21 | 徐磊, 赵育蓉, 胡悦旻, 等. 基于CRISPR/Cas9系统的多基因敲除载体的构建及其敲除效率检测[J]. 农业生物技术学报, 2022, 30 (5): 1023- 1030. |
XU L , ZHAO Y R , HU Y M , et al. Construction and knockout efficiency detection of multiple knockout vector based on the CRISPR/Cas9 system[J]. Journal of Agricultural Biotechnology, 2022, 30 (5): 1023- 1030. | |
22 |
KOR S D , CHOWDHURY N , KEOT A K , et al. RNA Pol Ⅲ promoters-key players in precisely targeted plant genome editing[J]. Front Genet, 2023, 13, 989199.
doi: 10.3389/fgene.2022.989199 |
23 |
REIS A C , HALPER S M , VEZEAU G E , et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays[J]. Nat Biotechnol, 2019, 37 (11): 1294- 1301.
doi: 10.1038/s41587-019-0286-9 |
24 |
ZHANG Z J , MAO Y F , HA S , et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis[J]. Plant Cell Rep, 2016, 35 (7): 1519- 1533.
doi: 10.1007/s00299-015-1900-z |
25 |
ZHANG J Q , GUO J X , WU X J , et al. Optimization of sgRNA expression strategy to generate multiplex gene-edited pigs[J]. Zool Res, 2022, 43 (6): 1005- 1008.
doi: 10.24272/j.issn.2095-8137.2022.244 |
26 |
XING H L , DONG L , WANG Z P , et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biol, 2014, 14, 327.
doi: 10.1186/s12870-014-0327-y |
27 |
NIE L H , DAS THAKUR M , WANG Y M , et al. Regulation of U6 promoter activity by transcriptional interference in viral vector-based RNAi[J]. Genomics Proteomics Bioinformatics, 2010, 8 (3): 170- 179.
doi: 10.1016/S1672-0229(10)60019-8 |
28 | 卢挥, 张启, 于思礼, 等. 谷氨酸棒杆菌中基于CRISPR/Cas9的多位点碱基编辑系统的优化[J]. 生物工程学报, 2022, 38 (2): 780- 795. |
LU H , ZHANG Q , YU S L , et al. Optimization of CRISPR/Cas9-based multiplex base editing in Corynebacterium glutamicum[J]. Chinese Journal of Biotechnology, 2022, 38 (2): 780- 795. | |
29 |
GU H Q , LIAN B , YUAN Y X , et al. A 5' tRNA-Ala-derived small RNA regulates anti-fungal defense in plants[J]. Sci China Life Sci, 2022, 65 (1): 1- 15.
doi: 10.1007/s11427-021-2017-1 |
30 |
SINGH J , SHARMA D , BRAR G S , et al. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants[J]. Mol Biol Rep, 2022, 49 (12): 11443- 11467.
doi: 10.1007/s11033-022-07741-2 |
31 |
ZALATAN J G , LEE M E , ALMEIDA R , et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160 (1-2): 339- 350.
doi: 10.1016/j.cell.2014.11.052 |
32 |
PORT F , BULLOCK S L . Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs[J]. Nat Methods, 2016, 13 (10): 852- 854.
doi: 10.1038/nmeth.3972 |
33 |
QI W W , ZHU T , TIAN Z R , et al. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize[J]. BMC Biotechnol, 2016, 16 (1): 58.
doi: 10.1186/s12896-016-0289-2 |
34 |
MINKENBERG B , XIE K B , YANG Y N . Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes[J]. Plant J, 2017, 89 (3): 636- 648.
doi: 10.1111/tpj.13399 |
35 |
XIE K B , MINKENBERG B , YANG Y N . Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proc Natl Acad Sci U S A, 2015, 112 (11): 3570- 3575.
doi: 10.1073/pnas.1420294112 |
36 |
HUANG S S , ZHANG Z W , TAO W Y , et al. Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA[J]. Mol Ther, 2022, 30 (9): 2923- 2932.
doi: 10.1016/j.ymthe.2022.07.002 |
37 |
MUSHTAQ M , AHMAD DAR A , SKALICKY M , et al. CRISPR-based genome editing tools: insights into technological breakthroughs and future challenges[J]. Genes (Basel), 2021, 12 (6): 797.
doi: 10.3390/genes12060797 |
38 |
KISHIMOTO T , NISHIMURA K , MORISHITA K , et al. An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors[J]. J Biol Eng, 2024, 18 (1): 9.
doi: 10.1186/s13036-024-00404-9 |
39 |
HAURWITZ R E , STERNBERG S H , DOUDNA J A . Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA[J]. EMBO J, 2012, 31 (12): 2824- 2832.
doi: 10.1038/emboj.2012.107 |
40 |
FERREIRA R , SKREKAS C , NIELSEN J , et al. Multiplexed CRISPR/Cas9 genome editing and gene regulation using csy4 in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2018, 7 (1): 10- 15.
doi: 10.1021/acssynbio.7b00259 |
41 |
ČERMÁK T , CURTIN S J , GIL-HUMANES J , et al. A multipurpose toolkit to enable advanced genome engineering in plants[J]. Plant Cell, 2017, 29 (6): 1196- 1217.
doi: 10.1105/tpc.16.00922 |
42 |
DOUDNA J A . Ribozymes: the hammerhead swings into action[J]. Curr Biol, 1998, 8 (14): R495- R497.
doi: 10.1016/S0960-9822(98)70316-1 |
43 |
GAO Y B , ZHAO Y D . Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing[J]. J Integr Plant Biol, 2014, 56 (4): 343- 349.
doi: 10.1111/jipb.12152 |
44 |
DEANER M , MEJIA J , ALPER H S . Enabling graded and large-scale multiplex of desired genes using a dual-mode dCas9 activator in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2017, 6 (10): 1931- 1943.
doi: 10.1021/acssynbio.7b00163 |
45 |
NISSIM L , PERLI S D , FRIDKIN A , et al. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells[J]. Mol Cell, 2014, 54 (4): 698- 710.
doi: 10.1016/j.molcel.2014.04.022 |
46 | ZHANG W W , MATLASHEWSKI G . CRISPR-Cas9-mediated genome editing in Leishmania donovani[J]. mBio, 2015, 6 (4): e00861. |
47 |
LI J H , ZHANG S J , ZHANG R Z , et al. Efficient multiplex genome editing by CRISPR/Cas9 in common wheat[J]. Plant Biotechnol J, 2021, 19 (3): 427- 429.
doi: 10.1111/pbi.13508 |
48 |
WANG P C , ZHANG J , SUN L , et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J]. Plant Biotechnol J, 2018, 16 (1): 137- 150.
doi: 10.1111/pbi.12755 |
49 |
URANGA M , ARAGONÉS V , SELMA S , et al. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector[J]. Plant J, 2021, 106 (2): 555- 565.
doi: 10.1111/tpj.15164 |
50 |
魏杰, 刘胜宇. 禽白血病净化防控技术探讨[J]. 山东畜牧兽医, 2023, 44 (11): 47- 49.
doi: 10.3969/j.issn.1007-1733.2023.11.015 |
WEI J , LIU S Y . Discussion on purification and prevention technology of avian leukosis[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44 (11): 47- 49.
doi: 10.3969/j.issn.1007-1733.2023.11.015 |
|
51 | 梁晶晶. CRISPR多重基因编辑技术敲除鸡TVB基因及新型多重基因编辑体系的建立[D]. 南宁: 广西大学, 2022. |
LIANG J J. Knockout of chicken TVB gene by multiplexed crispr technologies and establishment of a new multiple gene editing[D]. Nanning: Guangxi University, 2022. (in Chinese) | |
52 |
付婷婷, 叶莉, 范君文, 等. 近年来我国动物传染病研究现状分析及展望[J]. 中国比较医学杂志, 2021, 31 (2): 107- 113.
doi: 10.3969/j.issn.1671-7856.2021.02.017 |
FU T T , YE L , FAN J W , et al. The research status of infectious diseases in domestic animals[J]. Chinese Journal of Comparative Medicine, 2021, 31 (2): 107- 113.
doi: 10.3969/j.issn.1671-7856.2021.02.017 |
|
53 |
XU K , ZHOU Y R , MU Y L , et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9, e57132.
doi: 10.7554/eLife.57132 |
54 |
ZHANG X X , GUO C H . Recent advances in inhibition of porcine reproductive and respiratory syndrome virus through targeting CD163[J]. Front Microbiol, 2022, 13, 1006464.
doi: 10.3389/fmicb.2022.1006464 |
55 |
ZHU J Q , HE X , BERNARD D , et al. Identification of new compounds against PRRSV infection by directly targeting CD163[J]. J Virol, 2023, 97 (5): e0005423.
doi: 10.1128/jvi.00054-23 |
56 | BURKARD C , OPRIESSNIG T , MILEHAM A J , et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92 (16): e00415- 18. |
57 |
BURKARD C , LILLICO S G , REID E , et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13 (2): e1006206.
doi: 10.1371/journal.ppat.1006206 |
58 |
WELCH S K W , CALVERT J G . A brief review of CD163 and its role in PRRSV infection[J]. Virus Res, 2010, 154 (1-2): 98- 103.
doi: 10.1016/j.virusres.2010.07.018 |
59 |
PRATHER R S , WELLS K D , WHITWORTH K M , et al. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Sci Rep, 2017, 7 (1): 13371.
doi: 10.1038/s41598-017-13794-2 |
60 |
CHENG S P , WU H G , CHEN Z H . Evolution of transmissible gastroenteritis virus (TGEV): a codon usage perspective[J]. Int J Mol Sci, 2020, 21 (21): 7898.
doi: 10.3390/ijms21217898 |
61 |
CHEN J W , PAN K Y , CHEN Z , et al. Production of porcine aminopeptidase N (pAPN) site-specific edited pigs[J]. Anim Sci J, 2019, 90 (3): 366- 371.
doi: 10.1111/asj.13163 |
62 |
李宝贤, 马广鹏, 葛俊伟, 等. 猪流行性腹泻病毒功能性受体的鉴定[J]. 病毒学报, 2009, 25 (3): 220- 225.
doi: 10.3321/j.issn:1000-8721.2009.03.011 |
LI B X , MA G P , GE J W , et al. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J]. Chinese Journal of Virology, 2009, 25 (3): 220- 225.
doi: 10.3321/j.issn:1000-8721.2009.03.011 |
|
63 |
JI C M , WANG B , ZHOU J Y , et al. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells[J]. Virology, 2018, 517, 16- 23.
doi: 10.1016/j.virol.2018.02.019 |
64 |
LEE S J . Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction[J]. J Clin Invest, 2021, 131 (9): e148372.
doi: 10.1172/JCI148372 |
65 |
LI R Q , ZENG W , MA M , et al. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J]. Transgenic Res, 2020, 29 (1): 149- 163.
doi: 10.1007/s11248-020-00188-w |
[1] | Xiuqin CHEN, Su LIN, Shizhong ZHANG, Min ZHENG, Meiqing HUANG. Application of CRISPR/Cas-based Biosensors for Animal Diseases Diagnosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2859-2876. |
[2] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[3] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[4] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[5] | YANG Zhiyi, WANG Xinkai, SHI Yuting, FU Siyuan, ZHANG Yuxin, CAO Chenfu, JIA Weixin. Establishment of Nucleic Acid Detection Methods for Avian Influenza H5 Subtype Based on CRISPR-Cas13a and RT-RAA [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3803-3811. |
[6] | LIU Hua, YIN Dongdong, SHAO Ying, SONG Xiangjun, WANG Zhenyu, PAN Xiaocheng, TU Jian, HE Changsheng, ZHU Liangqiang, QI Kezong. Detection of Porcine Epidemic Diarrhea Virus by Recombinase Aided Amplification Combined with CRISPR/Cas13a [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3991-3997. |
[7] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[8] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[9] | GAO Pingping, FU Jinyu, WANG Liyang, SHI Shuobo, ZHANG Yueping, ZHANG Di. Rapid RPA-CRISPR/Cas12a Detection Platform for Dermatophytes in Dogs and Cats [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4702-4711. |
[10] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
[11] | DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79. |
[12] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[13] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[14] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
[15] | WANG Pei, WANG Meng, LI Tingting, ZHENG Xiaonan, LIANG Qinli, CHEN Xiaoqing. Generation and Basic Functional Characterization of Four Hypothetical Protein Genes Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3598-3608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||