

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5531-5544.doi: 10.11843/j.issn.0366-6964.2025.11.015
• Animal Genetics and Breeding • Previous Articles Next Articles
ZHANG Yiran1(
), MAO Nannan1, WANG Yunlong1, ZHOU Rongyan1,*(
), ZANG Sumin1, XIE Hui2,3, WANG Wenjun1, ZHANG Weiya1,*(
)
Received:2025-04-02
Online:2025-11-23
Published:2025-11-27
Contact:
ZHOU Rongyan, ZHANG Weiya
E-mail:2285436351@qq.com;rongyanzhou@126.com;syzwy@hebau.edu.cn
CLC Number:
ZHANG Yiran, MAO Nannan, WANG Yunlong, ZHOU Rongyan, ZANG Sumin, XIE Hui, WANG Wenjun, ZHANG Weiya. Identification of Key Genes Associated with Breast Muscle Rate in 28-day-old Squabs Based on Genome-wide Selection Signal and Transcriptome[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5531-5544.
Table 2
Genes and corresponding primer sequences"
| 基因 Gene | 引物序列(5′→3′) Primer sequence | 目的基因长度/bp Products size | 退火温度/℃ Annealing temperature |
| MCL1 | F: GGCTTAGACCCACGAGGATT R: TCTCGCCTTCTGCTCTGAAA | 198 | 60 |
| SIK1 | F: CATTTGAGCTGGCCTTTGCT R: TAGAAGGTGAGCTGCTGAGG | 95 | 60 |
| SLC16A10 | F: TGACTCGTTCTCCTTTGGCT R: GGGCTGTGGCTATTGAAAGG | 186 | 60 |
| TRIB2 | F: GCTGTACATCTGCACAGTGG R: AACTCCTGGTAGCAGCCAAT | 68 | 60 |
| PIK3R3 | F: CTTCACAAAGCCAGGCAACT R: AACCAAGAGCCTCCTCCTTC | 97 | 60 |
| IGF2BP3 | F: GTAAAGTGGAGCTGCATGGG R: TACAACTGCAGTCTCCGTGT | 191 | 60 |
| LTBP1 | F: GTGCCAGATCCTACCCTCTC R: TGCTGAGCTGAACAGACAGA | 127 | 60 |
| DPP4 | F: TCTGCAGTGGCTGAGAAGAA R: CGTTGTCAGGTGCAAAGTGA | 170 | 60 |
| TNFSF10 | F: AGTAAAGTGGCACCTGGGAA R: TTGCTGTTGCCTGTCAGATG | 168 | 60 |
| β-actin | F: CTACAGCTTCACCACCACAGCC R: GCTGTGGCCATCTCCTGCTCAA | 99 | 60 |
Table 3
Shared genes associated with muscle development in Fst>0.15 and pFst < 10-5"
| 染色体 Chromosome | 基因ID Gene ID | 基因 Gene | 功能 Function |
| 1 | A306_00003116 | ZIC2 | 肌肉分化[ |
| 2 | A306_00001266 | ANGPT1 | 骨骼肌卫星细胞增殖[ |
| 2 | A306_00001269 | OXR1 | 产肉量[ |
| 2 | A306_00001475 | NSMAF | 胴体性状[ |
| 2 | A306_00001476 | SDCBP | 胴体重量[ |
| 2 | A306_00001478 | UBXN2B | 胴体性状[ |
| 2 | A306_00001489 | LYN | 胴体性状[ |
| 2 | A306_00001490 | TGS1 | 胴体产量[ |
| 2 | A306_00001491 | TMEM68 | 生长性状[ |
| 2 | A306_00001493 | XKR4 | 胴体产量[ |
| 2 | A306_00001503 | ST18 | 肌肉发育[ |
| 2 | A306_00001717 | GRB10 | 肌肉生长和发育[ |
| 2 | A306_00001726 | UPP1 | 生长性状[ |
| 3 | A306_00000998 | KLHL31 | 肌肉生长和发育[ |
| 3 | A306_00000999 | GCLC | 生长性状[ |
| 3 | A306_00001095 | APOB | 肌肉发育[ |
| 3 | A306_00010435 | LTBP1 | 生长性状[ |
| 4 | A306_00003396 | EVC2 | 肉质[ |
| 4 | A306_00003397 | STK32B | 肉质[ |
| 4 | A306_00003399 | MSX1 | 成肌细胞分化[ |
| 4 | A306_00006969 | EDNRA | 肌肉生长[ |
| 6 | A306_00003890 | ITGB6 | 骨骼肌卫星细胞增殖[ |
| 6 | A306_00003896 | DPP4 | 成肌细胞分化[ |
| 8 | A306_00004220 | ROR1 | 骨骼肌卫星细胞增殖[ |
| 8 | A306_00004246 | MYSM1 | 肌肉生成[ |
| 9 | A306_00007726 | GHSR | 生长性状[ |
| 9 | A306_00007727 | TNFSF10 | 肌肉萎缩[ |
| 10 | A306_00006896 | PRTG | 日增重[ |
| Z | A306_00011946 | SMAD2 | 成肌细胞增殖分化[ |
Table 4
Transcriptome data quality assessment and results of Clean reads comparison with reference genome"
| 样品 Sample | 质控后reads/M Clean reads | 质控后测序量/G Clean data | Q30/% | GC含量/% GC content | 比对率/% Mapped reads rate |
| B1 | 87.89 | 13.18 | 93.65 | 49.62 | 61.49 |
| B2 | 72.82 | 10.92 | 93.94 | 49.19 | 59.22 |
| B3 | 77.07 | 11.56 | 94.78 | 48.31 | 66.40 |
| B4 | 80.79 | 12.12 | 94.70 | 49.43 | 62.99 |
| B5 | 85.46 | 12.82 | 94.43 | 48.59 | 60.32 |
| M1 | 111.22 | 16.68 | 95.98 | 49.62 | 60.37 |
| M2 | 90.73 | 13.61 | 94.77 | 49.19 | 60.20 |
| M3 | 67.07 | 10.06 | 95.35 | 48.31 | 38.80 |
| M4 | 109.00 | 16.35 | 95.44 | 49.43 | 66.04 |
| M5 | 82.10 | 12.32 | 94.34 | 48.59 | 54.74 |
Table 5
Genes related to muscle development enriched in nuclear components and apoptotic pathways"
| 基因ID Gene ID | 基因 Gene | 功能 Function |
| A306_00011622 | MCL1 | 肌肉生长[ |
| A306_00004203 | GADD45A | 肌肉萎缩[ |
| A306_00013720 | GADD45B | 肌源性分化[ |
| A306_00009707 | SIK1 | 肌肉生长[ |
| A306_00001065 | TRIB2 | 肌生成[ |
| A306_00002651 | IGF2BP3 | 成肌细胞增殖和分化[ |
| A306_00004566 | TIMP3 | 肌生成[ |
| A306_00010314 | PIK3R3 | 骨骼肌生长发育[ |
| A306_00006126 | PIK3CD | 成肌细胞增殖[ |
| A306_00013901 | CTSK | 肌肉损伤或坏死[ |
Table 6
The correlation coefficients between the fluorescence quantitative PCR data and RNA-Seq sequencing data of 9 differentially expressed genes"
| 基因ID Gene ID | MCL1 | SIK1 | SLC16A10 | TRIB2 | PIK3R3 | IGF2BP3 | LTBP1 | DPP4 | TNFSF10 |
| 相关系数 Correlation coefficient | 0.95 | 0.69 | 0.53 | 0.95 | 0.83 | 0.50 | 0.86 | 0.86 | 0.95 |
| 1 | 陈益填. 我国肉鸽业养殖现状、投资效益及发展趋势分析[J]. 中国家禽, 2012, 34 (4): 8- 11. |
| CHEN Y T . China's meat pigeon industry breeding status, investment efficiency and development trend analysis[J]. China Poultry, 2012, 34 (4): 8- 11. | |
| 2 | 陈益填. 我国鸽业市场现状及未来展望[J]. 畜牧产业, 2025 (2): 31- 32. |
| CHEN Y T . Current situation and prospects of pigeon market in China[J]. Livestock Industry, 2025 (2): 31- 32. | |
| 3 | 肖长峰, 吕文纬, 朱丽慧, 等. 我国肉鸽养殖产业存在的问题与对策分析[J]. 上海畜牧兽医通讯, 2020 (2): 56- 57. |
| XIAO C F , LV W W , ZHU L H , et al. Problems and Countermeasures Analysis of Meat Pigeon Farming Industry in China[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2020 (2): 56- 57. | |
| 4 | 汤青萍, 卜柱, 穆春宇, 等. 中国肉鸽养殖种质资源状况及介绍[J]. 中国畜禽种业, 2018, 14 (10): 165- 168. |
| TANG Q P , BU Z , MU C Y , et al. Status and introduction of germplasm resources for broiler pigeon breeding in China[J]. The Chinese Livestock and Poultry Breeding, 2018, 14 (10): 165- 168. | |
| 5 | 卜柱, 厉宝林, 赵振华, 等. 中国肉鸽主要品种资源与育种现状[J]. 中国畜牧兽医, 2010, 37 (6): 116- 119. |
| BU Z , LI B L , ZHAO Z H , et al. Resources and breeding status of the main varieties of pigeons in China[J]. China Animal Husbandry& Veterinary Medicine, 2010, 37 (6): 116- 119. | |
| 6 | 毛楠楠, 孙勇胜, 臧素敏, 等. 不同种群肉鸽生长与繁殖性能比较[J]. 家禽科学, 2022 (10): 3- 9. |
| MAO N N , SUN Y S , ZANG S M , et al. Comparison of growth and reproductive performance of different populations of meat pigeons[J]. Poultry Science, 2022 (10): 3- 9. | |
| 7 | 梁勇, 陈益填, 韩联众, 等. "天翔"肉鸽专门化品系培育及杂交配套研究[J]. 养禽与禽病防治, 2017 (4): 2- 3. |
| LIANG Y , CHEN Y T , HAN L Z , et al. Breeding and crossbreeding of "Tianxiang" pigeon specialization lines[J]. Poultry Husbandry and Disease Control, 2017 (4): 2- 3. | |
| 8 | 汤青萍, 卜柱, 宋迟, 等. 欧洲肉鸽不同品系生产性能测定[J]. 家畜生态学报, 2018, 39 (1): 73- 76. |
| TANG Q P , BU Z , SONG C , et al. Determination of production performance of different strains of European pigeons[J]. Journal of Domestic Animal Ecology, 2018, 39 (1): 73- 76. | |
| 9 | 汤青萍, 卜柱, 穆春宇, 等. 肉鸽实用选育技术[J]. 中国家禽, 2018, 40 (4): 69- 72. |
| TANG Q P , BU Z , MU C Y , et al. Practical selective breeding techniques for flesh pigeons[J]. China Poultry, 2018, 40 (4): 69- 72. | |
| 10 | 陈军. 对姜堰市肉鸽产业发展情况的调查分析[J]. 中国禽业导刊, 2008, 25 (18): 14- 15. |
| CHEN J . Investigation and analysis on the development of meat pigeon industry in Jiangyan City[J]. Guide To Chinese Poultry, 2008, 25 (18): 14- 15. | |
| 11 | 韩占兵, 黄炎坤. 肉种鸽品种退化原因及提纯复壮措施[J]. 中国家禽, 2004 (10): 52. |
| HAN Z B , HUANG Y K . Reasons for the degradation of meat pigeon breeds and measures for purification and rejuvenation[J]. China Poultry, 2004 (10): 52. | |
| 12 | 闫俊书, 周维仁, 宦海林, 等. 家禽肌纤维的生长发育规律及其调控[J]. 江苏农业科学, 2010 (5): 276- 279. |
| YAN J S , ZHOU W L , HUAN H L , et al. Growth and developmental patterns of poultry muscle fibers and their regulation[J]. Jiangsu Agricultural Sciences, 2010 (5): 276- 279. | |
| 13 | BENTZINGER C F , WANG Y X , RUDNICKI M A . Building muscle: molecular regulation of myogenesis[J]. Cold Spring Harb Perspect Biol, 2012, 4 (2): a008342. |
| 14 | JANSEN K M , PAVLATH G K . Molecular control of mammalian myoblast fusion[J]. Methods Mol Biol, 2008, 475, 115- 133. |
| 15 |
LI H , LI S J , ZHANG H , et al. Integrated GWAS and transcriptome analysis reveals key genes associated with muscle fibre and fat traits in Gushi chicken[J]. Br Poult Sci, 2025, 66 (1): 31- 41.
doi: 10.1080/00071668.2024.2400685 |
| 16 |
ZHAO D , LIU R R , TAN X D , et al. Large-scale transcriptomic and genomic analyses reveal a novel functional gene SERPINB6 for chicken carcass traits[J]. J Anim Sci Biotechnol, 2024, 15 (1): 70.
doi: 10.1186/s40104-024-01026-3 |
| 17 |
HU S Q , CHENG L M , WANG J W , et al. Genome-wide transcriptome profiling reveals the mechanisms underlying muscle group-specific phenotypic changes under different raising systems in ducks[J]. Poult Sci, 2020, 99 (12): 6723- 6736.
doi: 10.1016/j.psj.2020.09.027 |
| 18 | 付梦思, 李发达, 余梓榆, 等. 不同品种乳鸽胸肌发育的差异比较及转录组分析[J]. 中国家禽, 2023, 45 (7): 1- 10. |
| FU M S , LI F D , YU Z Y , et al. Comparison and transcriptome analysis of breast muscle development in different breeds of pigeon squabs[J]. China Poultry, 2023, 45 (7): 1- 10. | |
| 19 | YIN Z Z , ZHOU W , MAO H G , et al. Identification of genes related to squab muscle growth and lipid metabolism from transcriptome profiles of breast muscle and liver in domestic pigeon (Columba livia)[J]. Animals (Basel), 2022, 12 (9): 1061. |
| 20 |
DE LAS HERAS-SALDANA S , CHUNG KY , LEE S H , et al. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semi-membranosus[J]. BMC Genomics, 2019, 20 (1): 156.
doi: 10.1186/s12864-019-5530-7 |
| 21 | MOHAN NH , PATHAK P , BURAGOHAIN L , et al. Comparative muscle transcriptome of Mali and Hampshire breeds of pigs: a preliminary study[J]. Anim Biotechnol, 2023, 34 (8): 3946- 3961. |
| 22 |
ZHANG R , MIAO J , SONG Y X , et al. Genome-wide association study identifies the PLAG1-OXR1 region on BTA14 for carcass meat yield in cattle[J]. Physiol Genomics, 2019, 51 (5): 137- 144.
doi: 10.1152/physiolgenomics.00112.2018 |
| 23 | ALAM M Z , HAQUE M A , IQBAL A , et al. Genome-wide association study to identify QTL for carcass traits in Korean Hanwoo cattle[J]. Animals (Basel), 2023, 13 (17): 2737. |
| 24 |
ZHAO Y , YANG X , QI J J , et al. Genome-wide association studies reveal the genetic basis of growth and carcass traits in Sichuan Shelduck[J]. Poult Sci, 2024, 103 (11): 104211.
doi: 10.1016/j.psj.2024.104211 |
| 25 |
YU J Z , ZHOU J , YANG F X , et al. Genome-wide association analysis identifies candidate genes for carcass yields in Peking ducks[J]. Anim Genet, 2024, 55 (6): 833- 837.
doi: 10.1111/age.13480 |
| 26 |
SONG X Y , YAO Z , ZHANG Z J , et al. Whole-genome sequencing reveals genomic diversity and selection signatures in Xia'nan cattle[J]. BMC Genomics, 2024, 25 (1): 559.
doi: 10.1186/s12864-024-10463-3 |
| 27 |
GODOY T F , MOREIRA G C , BOSCHIERO C , et al. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition[J]. Anim Genet, 2015, 46 (2): 158- 163.
doi: 10.1111/age.12271 |
| 28 |
HU Z G , CAO J T , LIU G Y , et al. Comparative transcriptome profiling of skeletal muscle from Black Muscovy duck at different growth stages using RNA-seq[J]. Genes (Basel), 2020, 11 (10): 1228.
doi: 10.3390/genes11101228 |
| 29 |
WANG X X , XIAO Y P , HUA Y , et al. Transcriptome analysis reveals the genes involved in growth and metabolism in Muscovy ducks[J]. BioMed Research International, 2021, 2021 (1): 6648435.
doi: 10.1155/2021/6648435 |
| 30 | HU Z G , CAO J T , GE L Y , et al. Characterization and comparative transcriptomic analysis of skeletal muscle in Pekin Duck at different growth stages using RNA-Seq[J]. Animals (Basel), 2021, 11 (3): 834. |
| 31 | BO D D , FENG Y Q , BAI Y L , et al. Whole-genome resequencing reveals genetic diversity and growth trait-related genes in Pinan cattle[J]. Animals (Basel), 2024, 14 (15): 2163. |
| 32 |
ZHANG Y C , LU Y L , YU M L , et al. Transcriptome profiling identifies differentially expressed genes in skeletal muscle development in native Chinese ducks[J]. Genes (Basel), 2023, 15 (1): 52.
doi: 10.3390/genes15010052 |
| 33 |
ZHANG S L , LI J , ZHAO Y H , et al. Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in southwestern China[J]. Front Genet, 2024, 15, 1382128.
doi: 10.3389/fgene.2024.1382128 |
| 34 |
LIU Z C , QIN Q , ZHANG C Y , et al. Effects of nonsynonymous single nucleotide polymorphisms of the KIAA1217, SNTA1 and LTBP1 genes on the growth traits of Ujumqin sheep[J]. Front Vet Sci, 2024, 11, 1382897.
doi: 10.3389/fvets.2024.1382897 |
| 35 |
WANG S H , YI X H , WU M L , et al. Detection of key gene InDels in TGF-β pathway and its relationship with growth traits in four sheep breeds[J]. Anim Biotechnol, 2021, 32 (2): 194- 204.
doi: 10.1080/10495398.2019.1675682 |
| 36 |
LEAL-GUTIERREZ J D , ELZO M A , JOHNSON D D , et al. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef[J]. BMC Genomics, 2019, 20 (1): 151.
doi: 10.1186/s12864-019-5518-3 |
| 37 |
WANG H H , ZHANG L , CAO J X , et al. Genome-wide specific selection in three domestic sheep breeds[J]. PLoS One, 2015, 10 (6): e0128688.
doi: 10.1371/journal.pone.0128688 |
| 38 | LEE J H , LI Y , KIM J J . Detection of QTL for carcass quality on chromosome 6 by exploiting linkage and linkage disequilibrium in Hanwoo[J]. Asian-Australas J Anim Sci, 2012, 25 (1): 17- 21. |
| 39 |
ZHOU G Q , YANG Y N , ZHANG X M , et al. Msx1 cooperates with Runx1 for inhibiting myoblast differentiation[J]. Protein Expr Purif, 2021, 179, 105797.
doi: 10.1016/j.pep.2020.105797 |
| 40 |
ZHU X L , LI M R , JIA X , et al. The homeoprotein Msx1 cooperates with Pkn1 to prevent terminal differentiation in myogenic precursor cells[J]. Biochimie, 2019, 162, 55- 65.
doi: 10.1016/j.biochi.2019.04.003 |
| 41 |
LEE H , HABAS R , ABATE-SHEN C . MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis[J]. Science, 2004, 304 (5677): 1675- 1678.
doi: 10.1126/science.1098096 |
| 42 |
KODAKA Y , TANAKA K , KITAJIMA K , et al. LIM homeobox transcription factor Lhx2 inhibits skeletal muscle differentiation in part via transcriptional activation of Msx1 and Msx2[J]. Exp Cell Res, 2015, 331 (2): 309- 319.
doi: 10.1016/j.yexcr.2014.11.009 |
| 43 |
XIONG H L , ZHANG Y , ZHAO Z Y . Investigation of single nucleotide polymorphisms in differentially expressed genes and proteins reveals the genetic basis of skeletal muscle growth differences between Tibetan and Large White pigs[J]. Anim Biosci, 2024, 37 (12): 2021- 2032.
doi: 10.5713/ab.24.0135 |
| 44 |
QIAO H X , WANG S S , ZHOU J , et al. ITGB6 inhibits the proliferation of porcine skeletal muscle satellite cells[J]. Cell Biol Int, 2022, 46 (1): 96- 105.
doi: 10.1002/cbin.11702 |
| 45 |
KOLANOWSKI T J , ROZWADOWSKA N , ZIMNA A , et al. Chromatin and transcriptome changes in human myoblasts show spatio-temporal correlations and demonstrate DPP4 inhibition in differentiated myotubes[J]. Sci Rep, 2020, 10 (1): 14336.
doi: 10.1038/s41598-020-70756-x |
| 46 |
KAMIZAKI K , DOI R , HAYASHI M , et al. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle[J]. J Biol Chem, 2017, 292 (38): 15939- 15951.
doi: 10.1074/jbc.M117.785709 |
| 47 | HUANG R Q , CHEN J H , XU D , et al. Transcriptome data revealed the circRNA-miRNA-mRNA regulatory network during the proliferation and differentiation of myoblasts in Shitou goose[J]. Animals (Basel), 2024, 14 (4): 576. |
| 48 |
CAI Z B , LI M , ZHANG Y W , et al. Comparative transcriptome analyses of longissimus thoracis between pig breeds differing in muscle characteristics[J]. Front Genet, 2020, 11, 526309.
doi: 10.3389/fgene.2020.526309 |
| 49 |
ZHOU Z J , REN Y , YANG J X , et al. Acetyl-coenzyme A synthetase 2 potentiates macropinocytosis and muscle wasting through metabolic reprogramming in pancreatic cancer[J]. Gastroenterology, 2022, 163 (5): 1281- 1293.
doi: 10.1053/j.gastro.2022.06.058 |
| 50 |
MANCIN E , TULIOZI B , PEGOLO S , et al. Genome wide association study of beef traits in local alpine breed reveals the diversity of the pathways involved and the role of time stratification[J]. Front Genet, 2022, 12, 746665.
doi: 10.3389/fgene.2021.746665 |
| 51 |
LU J W , LIU Y L , LI H X . oar-miR-411a-5p promotes proliferation and differentiation in Hu sheep myoblasts under heat stress by targeting SMAD2[J]. J Cell Physiol, 2025, 240 (2): e31515.
doi: 10.1002/jcp.31515 |
| 52 |
CHEN F X , WU P F , SHEN M M , et al. Transcriptome analysis of differentially expressed genes related to the growth and development of the Jinghai Yellow chicken[J]. Genes (Basel), 2019, 10 (7): 539.
doi: 10.3390/genes10070539 |
| 53 |
LIU Y , MA Y , TU Z , et al. Mcl-1 inhibits Mff-mediated mitochondrial fragmentation and apoptosis[J]. Biochem Biophys Res Commun, 2020, 523 (3): 620- 626.
doi: 10.1016/j.bbrc.2019.12.104 |
| 54 |
EHMSEN J T , KAWAGUCHI R , KAVAL D , et al. GADD45A is a protective modifier of neurogenic skeletal muscle atrophy[J]. JCI Insight, 2021, 6 (13): e149381.
doi: 10.1172/jci.insight.149381 |
| 55 |
DENG K P , FAN Y X , LIANG Y X , et al. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway[J]. Mol Ther Nucleic Acids, 2021, 26, 34- 48.
doi: 10.1016/j.omtn.2021.06.013 |
| 56 |
BERDEAUX R , GOEBEL N , BANASZYNSKI L , et al. SIK1 is a class Ⅱ HDAC kinase that promotes survival of skeletal myocytes[J]. Nat Med, 2007, 13 (5): 597- 603.
doi: 10.1038/nm1573 |
| 57 |
STEWART R , AKHMEDOV D , ROBB C , et al. Regulation of SIK1 abundance and stability is critical for myogenesis[J]. Proc Natl Acad Sci U S A, 2013, 110 (1): 117- 122.
doi: 10.1073/pnas.1212676110 |
| 58 |
WANG K , LIUFU S , YU Z , et al. miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway[J]. Int J Mol Sci, 2023, 24 (10): 8906.
doi: 10.3390/ijms24108906 |
| 59 |
WANG X T , LIN J Y , JIAO Z H , et al. Circular RNA circIGF2BP3 promotes the proliferation and differentiation of chicken primary myoblasts[J]. Int J Mol Sci, 2023, 24 (21): 15545.
doi: 10.3390/ijms242115545 |
| 60 |
LIN S M , LUO W , YE Y Q , et al. Let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chicken[J]. Front Physiol, 2017, 8, 477.
doi: 10.3389/fphys.2017.00477 |
| 61 |
HOU H B , WANG X L , LI X , et al. Genome-wide association study of growth traits and validation of key mutations (MSTN c.C861T) associated with the muscle mass of meat pigeons[J]. Anim Genet, 2024, 55 (1): 110- 122.
doi: 10.1111/age.13382 |
| 62 | LIU H J , CHE S Y , JIN B W , et al. TIMP3: a physiological regulator of adult myogenesis[J]. J Cell Sci, 2010, 123 (Pt 17): 2914- 2921. |
| 63 | XU X L , LU H , XU D , et al. miR-708-5p regulates myoblast proliferation and differentiation[J]. Vet Sci, 2022, 9 (11): 641. |
| 64 |
YUE Y W , JIN C F , CHEN M M , et al. A lncRNA promotes myoblast proliferation by up-regulating GH1[J]. In Vitro Cell Dev Biol Anim, 2017, 53 (8): 699- 705.
doi: 10.1007/s11626-017-0180-z |
| 65 |
KIMURA S , MIYAKE N , OZASA S , et al. Increase in cathepsin K gene expression in Duchenne muscular dystrophy skeletal muscle[J]. Neuropathology, 2024, 44 (6): 411- 421.
doi: 10.1111/neup.12995 |
| 66 |
ZHANG B , MA J , SHEN L , et al. Genomic insights into pigeon breeding: GWAS for economic traits and the development of a high-throughput liquid phase array chip[J]. Poult Sci, 2025, 104 (3): 104872.
doi: 10.1016/j.psj.2025.104872 |
| 67 |
MAO H G , DONG X Y , CAO H Y , et al. Association of DGAT2 gene polymorphisms with carcass and meat quality traits in domestic pigeons (Columba livia)[J]. Br Poult Sci, 2018, 59 (2): 149- 153.
doi: 10.1080/00071668.2017.1413232 |
| 68 |
MAO H G , CAO H Y , LIU H H , et al. Association of ADSL gene polymorphisms with meat quality and carcass traits in domestic pigeons (Columba livia)[J]. Br Poult Sci, 2018, 59 (5): 604- 607.
doi: 10.1080/00071668.2018.1493188 |
| 69 |
BUCKINGHAM M . Myogenic progenitor cells and skeletal myogenesis in vertebrates[J]. Curr Opin Genet Dev, 2006, 16 (5): 525- 532.
doi: 10.1016/j.gde.2006.08.008 |
| 70 |
WAGERS A , CONBOY I M . Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis[J]. Cell, 2005, 122 (5): 659- 667.
doi: 10.1016/j.cell.2005.08.021 |
| 71 |
HOCHREITER-HUFFORD A E , LEE C S , KINCHEN J M , et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion[J]. Nature, 2013, 497 (7448): 263- 267.
doi: 10.1038/nature12135 |
| [1] | BAI Feng, MAERZIYA·Yasen , AMINIGULI·Abulaizi , TENG Wen, LUO Chunyan, NAZHAKAITI·Ainiwaner , ZHANG Yuntao, JI Xinmin, ZHANG Yanhua. Genome-Wide Association Study of Body Weight and Body Size Traits In Turpan Black Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4315-4327. |
| [2] | LI Jiapeng, LIU Qing, SUN Jiayu, MA Zefang, CUI Kai. Screening of Key Genes for Coat Color Formation in Silver Fox Based on Transcriptome and Proteome Analyses [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4379-4392. |
| [3] | LIU Xinyue, LI Danni, ZONG Ying, SHI Kun, LI Jianming, DIAO Naichao, ZENG Fanli, DU Rui. Transcriptome Analysis of RAW264.7 Macrophages Infected with Rv3435c Recombinant Mycobacterium smegmatis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4657-4672. |
| [4] | YU Shulong, MAO Nannan, WANG Yunlong, ZHANG Yiran, WANG Yuanyuan, ZHOU Rongyan, ZANG Sumin, XIE Hui. Research Progress on Pigeon Sex Identification [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3601-3609. |
| [5] | FAN Jing, LI Wei, ZHU Yan, Wudubala , SHI Jiahui, Husile , WU Jianghong. Study on Rumen Morphological Changes and Gene Expression Differences in Hu Sheep at Different Developmental Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3773-3786. |
| [6] | MIAO Junjie, ZHANG Riquan, WU Houyi, YOU Xinming, HUANG Yiwen, HUANG Xiaoying, GUO Zhenyang, LIU Jianlin, XIAO Weihua, GUO Tianhua, CHEN Hao, KANG Dongliu. Genome-Wide SNP Analysis Revealed the Characteristics of Germplasm Resources and Genetic Diversity of Jinggang Black-Palm Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3199-3209. |
| [7] | LIU Sha, SU Meng, GAO Qianmei, SONG Danli, ZHAO Guiping, LI Jianhui, LI Qinghe. Transcriptome Analysis of Chicken Macrophages after SIRT1 Activated [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2661-2671. |
| [8] | CHEN Yanru, MA Xiaochun, WANG Minghui, TANG Yaoyao, BAI Lu, ZHAO Guiping, WEN Jie, LIU Ranran. Incidence of Spaghetti Meat and Wooden Breast in Breast Muscles of Broilers and Their Effects on Meat Quality [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2672-2684. |
| [9] | LIU Zilong, LI Qiao, WU Yi, WANG Huihui, LI Taotao, MA Youji. Transcriptomics Reveals the Effects of Chinese Herbal Feed Additives on Bile Acids Metabolism and Immune Function in Hu Sheep Liver Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 3014-3026. |
| [10] | SUN Guoxin, LI Yunhua, SAI Yin, GUO Wenhua, ZHAO Yanhong, ZHANG Manxin, LIU Jiasen. Population Structure Analysis and Economic Traits Related Selection Signal Detection of Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2168-2181. |
| [11] | SHI Jinchuan, SUN Miao, MENG Linghao, WANG Yongqiang, GENG Chao, QI Chaolumeng, CHEN Hengli, WANG Zi, LIU Kai. Detection of Antibiotic Resistance in Escherichia coli Strains Sourced from Racing Pigeons and Whole-genome Sequencing Analysis of Multidrug-resistant Strains [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2372-2382. |
| [12] | LI Cong, SU Jiangtian, LI Yidan, WANG Zhaofei, YU Jie, LEI Chuzhao, DANG Ruihua. Genome-wide Association Study of Body Traits in Dezhou Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1744-1754. |
| [13] | HUANG Yani, TANG Xi, LI Jingquan, WEI Jiacheng, WU Zhenfang, LI Xinyun, XIAO Shijun, ZHANG Zhiyan. Large-scale Population Analysis of Potential Causal Genes for Daily Weight Gain and Age at 100 kg in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1100-1109. |
| [14] | WU Jiahao, WU Ziyi, DOU Tengfei, BAI Liyao, ZHANG Yongqian, DONG Lianhe, LI Pengfei, LI Xinjian, HAN Xuelei, LI Xiuling. Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of Yunong-Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1110-1119. |
| [15] | YANG Xiaowen, NING Wenqing, ZHOU Shizhong, YUAN Yaqin, HOU Xuexin, DING Jiabo. Establishment of a Quantitative Real-time PCR Detection Method for Trimethoprim-Sulfamethoxazole-resistance Strains of Brucella melitensis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1465-1472. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||