

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (10): 4851-4862.doi: 10.11843/j.issn.0366-6964.2025.10.008
• Review • Previous Articles Next Articles
RAN Hongli1(
), WEN Xin1, XU Jiaojiao1, CHEN Longhai1, WU Yinbao1,2,3,4,*(
)
Received:2024-12-24
Online:2025-10-23
Published:2025-11-01
Contact:
WU Yinbao
E-mail:3350656529@qq.com;wuyinbao@scau.edu.cn
CLC Number:
RAN Hongli, WEN Xin, XU Jiaojiao, CHEN Longhai, WU Yinbao. Fate of the Colistin Resistance Gene mcr-1 in Crop-Livestock Integrated Farming Systems[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4851-4862.
Fig. 1
Mechanism of mobile colistin resistance (MCR)[6] MCR binds to phosphatidylethanolamine (PE) and removes phosphatidylethanolamine (pEtN) from PE at the periplasmic surface of the intracellular membrane, yielding the end product diacylglycerol (DG) and the intermediate product, MCR-conjugated pEtN. Transfer of pEtN to [di(3-deoxy-D-manno-octulosonic acid)] (Kdo2)-lipid A, yielding the end product Kdo2-lipid A-4′-PpEtN. Abbreviation: LPS. Lipopolysaccharide"
Fig. 2
The classical mechanisms of ARGs transfer among microorganisms[16] A. Conjugation (The main mechanisms of horizontal transfer of ARGs. The donor bacterium employs a type IV secretion system (T4SS) to mediate the formation of a sex pilus, through which plasmids are transferred from one bacterium to another via this proteinaceous conduit); B. Transformation (integrate free ARGs into the bacterial chromosome); C. Transduction (ARGs from donor bacteria are assembled into phage and subsequently transduced into recipient bacteria during infection). The figure is created by BioRender (https://www.biorender.com/)"
Table 1
Characterization of mcr-1 gene assignment in livestock and poultry farming"
| 样本来源 Sample sources | 样本种类 Sample type | 样本数量 Sample size | 采样时间 Sampling time | 地域分布 Geographical distribution | 检出率或丰度 Detection rate or abundance |
| 畜禽肠道 Livestock intestinal tract | 鸡Chicken | 275 | 2021年前 | 中国 | 5.8%[ |
| 鸭Duck | 15 | 2024年 | 中国(广东) | 100%[ | |
| 猪Pig | 325 | 2023年 | 中国(上海) | 41.8%[ | |
| 猪Pig | 804 | 2012—2014年 | 中国(广东、广西、湖南、江西) | 20.6%[ | |
| 牛Cattle | 118 | 2018年 | 中国(辽宁、陕西、贵州和湖南) | 0.02 copies/16S rRNA gene copies[ | |
| 畜禽粪便 Livestock manure | 鸡粪Chicken manure | 202 | 2021年前 | 英国、德国、保加利亚、意大利、法国、西班牙、波兰、比利时、荷兰 | 7.4%[ |
| 鸭粪Duck manure | 66 | 2022年 | 中国(青岛) | 24.2%[ | |
| 猪粪Pig manure | 753 | 2019年 | 中国(武汉) | 59.6%[ | |
| 猪粪Pig manure | 57 | 2021年 | 西班牙 | 7.0%[ | |
| 牛粪Cattle manure | 51 | 2019年 | 中国(江苏、浙江) | 31.3%[ | |
| 牛粪Cattle manure | 152 | 2021年 | 西班牙 | 8.6%[ | |
| 畜禽污水 Livestock sewage | 鸡场Chicken farm | 53 | 2020年 | 中国东部 | 69.9%[ |
| 鸭场Duck farm | 143 | 2017年 | 中国(广东) | 22.4%[ | |
| 猪场Pig farm | 412 | 2016—2019年 | 中国(北京、河南、山东、四川和浙江) | >85%[ | |
| 猪场Pig farm | 65 | 2019年 | 中国(广东、福建、江苏、山东、河南和辽宁) | 64.6%[ | |
| 猪场Pig farm | / | 2016年 | 中国(武汉) | 5.0×104 copies·L-1[ |
| 1 | 张扬, 王璐瑶. 中国种养结合发展模式研究进展[J]. 农业科学, 2021, 11 (10): 951- 956. |
| ZHANG Y , WANG L Y . Research progress on the development mod-el of the combination of planting and breed-ing in China[J]. Hans Journal of Agricultural Sciences, 2021, 11 (10): 951- 956. | |
| 2 | ZHENG B , XU H , HUANG C , et al. Occurrence and genomic characterization of two mcr-1-producing Escherichia coli isolates from the same mink farmer[J]. mSphere, 2019, 4 (6): e00602- e00619. |
| 3 |
LIU Y , WANG Y , WALSH T R , et al. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16 (2): 161- 168.
doi: 10.1016/S1473-3099(15)00424-7 |
| 4 |
WANG X , LI L , SUN F , et al. Detection of mcr-1-positive Escherichia coli in slaughterhouse wastewater collected from Dawen river[J]. Vet Med Sci, 2021, 7 (5): 1587- 1592.
doi: 10.1002/vms3.489 |
| 5 |
ELBEDIWI M , LI Y , PAUDYAL N , et al. Global burden of colistin-resistant bacteria: mobilized colistin resistance genes study (1980-2018)[J]. Microorganisms, 2019, 7 (10): 461.
doi: 10.3390/microorganisms7100461 |
| 6 |
LIU J , LIU Y , SHEN Y , et al. Plasmid-mediated colistin-resistance genes: mcr[J]. Trends Microbiol, 2024, 32 (4): 365- 378.
doi: 10.1016/j.tim.2023.10.006 |
| 7 | 王雪杨, 蒋君瑶, 杨璐, 等. 黏菌素促进mcr-1阳性IncI2质粒在大肠杆菌间的接合转移[J]. 中国农业科学, 2022, 55 (14): 2862- 2874. |
| WANG X Y , JIANG J Y , YANG L , et al. Colistin promotes mcr-1-positive inci2 plasmid conjugation between Escherichia coli[J]. Scientia Agricultura Sinica, 2022, 55 (14): 2862- 2874. | |
| 8 | 中华人民共和国农业部. 中华人民共和国农业部公告第2428号[EB/OL]. 2016. [2024-12-12] https://www.moa.gov.cn/nybgb/2016/dibaqi/201712/t20171219_6102822.htm. |
| Ministry of Agriculture of the People's Republic of China. Ministry of Agriculture of the People's Republic of China announcement No. 2428[EB/OL]. 2016. [2024-12-12] https://www.moa.gov.cn/nybgb/2016/dibaqi/201712/t20171219_6102822.htm(in Chinese) | |
| 9 | 陈勇, 李亚鑫, 王亚瑄, 等. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39 (6): 102- 108. |
| CHEN Y , LI Y X , WANG Y X , et al. Research progress in the molecular mechanism of mcr-1 mediated polymyxin resistance[J]. Biotechnology Bulletin, 2023, 39 (6): 102- 108. | |
| 10 | 李硕, 刑平. 磷酸乙醇胺转移酶mcr-1结构与功能的研究[J]. 四川大学学报(自然科学版), 2018, 1127- 1132. |
| LI S , XING P . Study on the structure and function of phosphoethanolamine transferase mcr-1[J]. Journal of Sichuan University (Natural Science Edition), 2018, 1127- 1132. | |
| 11 |
GAO R , HU Y , LI Z , et al. Dissemination and mechanism for the mcr-1 colistin resistance[J]. PLOS Pathog, 2016, 12 (11): e1005957.
doi: 10.1371/journal.ppat.1005957 |
| 12 |
HUANG J . Why does lateral transfer occur in so many species and how?[J]. Chinese Science Bulletin, 2017, 62 (12): 1221- 1225.
doi: 10.1360/N972016-00639 |
| 13 |
ZHU L , ZHOU Z , LIU Y , et al. Comprehensive understanding of the plasmid-mediated colistin resistance genemcr-1in aquatic environments[J]. Environ Sci Technol, 2020, 54 (3): 1603- 1613.
doi: 10.1021/acs.est.9b05919 |
| 14 | 王新兴, 郑常委, 王巧云, 等. MCR-1介导多粘菌素耐药机制的研究进展[J]. 中国动物传染病学报, 2018, 26 (6): 4. |
| WANG X X , ZHENG C W , WANG Q Y , et al. Research advances in the mechanism of mcr-1-mediated colistin resistance[J]. Chinese Journal of Animal Infectious Diseases, 2018, 26 (6): 4. | |
| 15 |
WANG M , LIU P , ZHOU Q , et al. Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces[J]. Environ Pollut, 2018, 238, 291- 298.
doi: 10.1016/j.envpol.2018.03.024 |
| 16 |
HOLMES A H , MOORE L S P , SUNDSFJORD A , et al. Understanding the mechanisms and drivers of antimicrobial resistance[J]. The Lancet, 2016, 387 (10014): 176- 187.
doi: 10.1016/S0140-6736(15)00473-0 |
| 17 | FENG J , XU Z , ZHUANG Y , et al. The prevalence, diagnosis, and dissemination of mcr-1 in colistin resistance: progress and challenge[J]. Decod Infect Transm, 2023, 1, 100007. |
| 18 |
JIANG Y , ZHANG Y , LU J , et al. Clinical relevance and plasmid dynamics of mcr-1-positive Escherichia coli in China: a multicentre case-control and molecular epidemiological study[J]. The Lancet Microbe, 2020, 1 (1): e24- e33.
doi: 10.1016/S2666-5247(20)30001-X |
| 19 |
ALI A , FONTANA H , SANO E , et al. Genomic features of a high-risk mcr-1.1-positive escherichia coli st10 isolated from cattle farm environment[J]. Environ Sci Pollut Res Int, 2021, 28 (38): 54147- 54152.
doi: 10.1007/s11356-021-15437-6 |
| 20 |
XIAOMIN S , YIMING L , YUYING Y , et al. Global impact of mcr-1-positive enterobacteriaceae bacteria on "one health"[J]. Crit Rev Microbiol, 2020, 46 (5): 565- 577.
doi: 10.1080/1040841X.2020.1812510 |
| 21 |
JIANG L , ZHU H , WEI J , et al. Enterobacteriaceae genome-wide analysis reveals roles for P1-like phage-plasmids in transmission of mcr-1, tetX4 and other antibiotic resistance genes[J]. Genomics, 2023, 115 (2): 110572.
doi: 10.1016/j.ygeno.2023.110572 |
| 22 | 蒋宇轩, 袁琳, 路娟娥, 等. 动物源性黏菌素耐药基因mcr-1携带率变化及适应性代价的研究进展[J]. 黑龙江畜牧兽医, 2023 (19): 22- 28. |
| JIANG Y X , YUAN L , LU J E , et al. Advances in the changing carriage rates and adaptive costs of mcr-1 gene in zoonotic colistin resistance[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023 (19): 22- 28. | |
| 23 |
YANG Q , LI M , SPILLER O B , et al. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms[J]. Nat Commun, 2017, 8 (1): 2012- 2054.
doi: 10.1038/s41467-017-01944-z |
| 24 |
GUO Z , FENG S , LIANG L , et al. Assessment of the reversibility of resistance in the absence of antibiotics and its relationship with the resistance gene's fitness cost: a genetic study with mcr-1[J]. The Lancet Microbe, 2024, 5 (8): 100846.
doi: 10.1016/S2666-5247(24)00052-1 |
| 25 | 王媛. 多粘菌素对mcr-1阳性细菌体外敏感性测定方法的比较及耐药性对细菌适应性和毒力的影响[D]. 杭州: 浙江大学, 2021. |
| WANG Y. Comparison of in vitro susceptibility assays of polymyxin to mcr-1-positive bacteria and the effect of drug resistance on bacterial adaptability and virulence[D]. Hangzhou: Zhejiang University, 2021. (in Chinese) | |
| 26 |
DAHLBERG C , CHAO L . Amelioration of the cost of conjugative plasmid carriage in eschericha coli K12[J]. Genetics, 2003, 165 (4): 1641- 1649.
doi: 10.1093/genetics/165.4.1641 |
| 27 |
YANG Q E , MACLEAN C , PAPKOU A , et al. Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in Escherichia coli clones[J]. ISME J, 2020, 14 (3): 861- 865.
doi: 10.1038/s41396-019-0578-6 |
| 28 | LIAO Z , SMIRNOV A . FinO/ProQ-family proteins: an evolutionary perspective[J]. Biosci Rep, 2023, 43 (3): 1- 21. |
| 29 | 朱琪琪, 路宁宁, 王承业, 等. 黏菌素耐药基因mcr-1的研究进展[J]. 中国人兽共患病学报, 2023, 39 (12): 1211- 1217. |
| ZHU Q Q , LU N N , WANG C Y . Research progress in the colistin resistance gene mcr-1[J]. Chinese Journal of Zoonoses, 2023, 39 (12): 1211- 1217. | |
| 30 | 周巧丽. 猪源大肠杆菌mcr-1基因及其传播质粒的流行变化特征研究[D]. 广州: 华南农业大学, 2020. |
| ZHOU Q L. Prevalence Characteristics and molecular transmission mechanisms of colistin resistance mcr-1 gene in Escherichia coli and salmonella enterica[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) | |
| 31 |
胡俊, 丁帅帅, 魏述永. 可转移黏菌素耐药基因mcr: 控制革兰阴性菌感染"最后一道防线"的严峻挑战[J]. 畜牧兽医学报, 2023, 54 (2): 504- 519.
doi: 10.11843/j.issn.0366-6964.2023.02.009 |
|
HU J , DING S S , WEI S Y . Mobile colistin resistance gene (mcr): a severe challenge to the "last-line defense" of gram-negative bacterial infections[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 504- 519.
doi: 10.11843/j.issn.0366-6964.2023.02.009 |
|
| 32 |
ILBEIGI K , ASKARI BADOUEI M , VAEZI H , et al. Molecular survey of mcr1 and mcr2 plasmid mediated colistin resistance genes in Escherichia coli isolates of animal origin in Iran[J]. BMC Res Notes, 2021, 14 (1): 11- 14.
doi: 10.1186/s13104-020-05440-4 |
| 33 | 丰俊, 刘明香, 庄源, 等. 上海市污水处理厂携带mcr-1耐药基因肠道杆菌菌株的分离及拷贝数定量分析[J]. 上海预防医学, 2024, 36 (3): 217- 223. |
| FENG J , LIU M X , ZHUANG Y , et al. Isolation of enterobacteriaceae strains carrying mcr-1 resistance gene from Shanghai wastewater treatment plants and quantification of their copy number[J]. Shanghai Journal of Preventive Medicine, 2024, 36 (3): 217- 223. | |
| 34 |
GAO Y , LU C , SHEN D , et al. Elimination of the risks of colistin resistance gene (mcr-1) in livestock manure during composting[J]. Environ Int, 2019, 126, 61- 68.
doi: 10.1016/j.envint.2019.02.015 |
| 35 |
JAGANI R , PATEL H , CHOVATIYA J , et al. The rise and risks of fluorinated pesticides: a call for comprehensive research to address environmental and health concerns[J]. J Agric Food Chem, 2025, 73 (4): 2217- 2220.
doi: 10.1021/acs.jafc.4c12827 |
| 36 |
WANG Y , XU C , ZHANG R , et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study[J]. Lancet Infect Dis, 2020, 20 (10): 1161- 1171.
doi: 10.1016/S1473-3099(20)30149-3 |
| 37 |
FENG Y , WANG Y , ZHU B , et al. Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes[J]. Commun Biol, 2021, 4 (1): 1305.
doi: 10.1038/s42003-021-02827-2 |
| 38 |
LI Y , NIU H , HUANG L , et al. Research note: synergistic effect of isopropoxy benzene guanidine and colistin against mcr-1-positive Escherichia coli in vitro and in duck intestine infection models[J]. Poult Sci, 2024, 103 (9): 104018.
doi: 10.1016/j.psj.2024.104018 |
| 39 | 高芸, 轩慧勇, 姚晓慧, 等. MALDI-TOF质谱技术对猪肠道菌群中携带mcr-1细菌的鉴定与聚类分型[J]. 中国动物传染病学报, 2023, 31 (3): 127- 133. |
| GAO Y , XUAN H Y , YAO X H , et al. Identification and typing of mcr-1-carrying bacterial strains isolated from pig gut flora by maldi-tof mass spectrometry[J]. Chinese Journal of Animal Infectious Diseases, 2023, 31 (3): 127- 133. | |
| 40 | 崔云昊, 刘志诚, 张启迪, 等. 2022年青岛地区鸡源和鸭源多黏菌素耐药大肠杆菌流行情况[J]. 中国兽医杂志, 2024, 60 (5): 30- 38. |
| CUI Y H , LIU Z C , ZHANG Q D . Epidemiology of colistin-resistant Escherichia coli from chicken and duck sources in Qingdao in 2022[J]. Chinese Journal of Veterinary Medicine, 2024, 60 (5): 30- 38. | |
| 41 |
WANG Y , HU Y , CAO J , et al. Antibiotic resistance gene reservoir in live poultry markets[J]. J Infect, 2019, 78 (6): 445- 453.
doi: 10.1016/j.jinf.2019.03.012 |
| 42 |
VIÑES J , CUSCÓ A , NAPP S , et al. Transmission of similar mcr-1 carrying plasmids among different Escherichia coli lineages isolated from livestock and the farmer[J]. Antibiotics, 2021, 10 (3): 313.
doi: 10.3390/antibiotics10030313 |
| 43 |
CAO Y , LIN Q , HE W , et al. Co-selection may explain the unexpectedly high prevalence of plasmid-mediated colistin resistance gene mcr-1in a Chinese broiler farm[J]. Zool Res, 2020, 41 (5): 569- 575.
doi: 10.24272/j.issn.2095-8137.2020.131 |
| 44 |
SHEN Y , LV Z , YANG L , et al. Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain[J]. Environ Int, 2019, 130, 104708.
doi: 10.1016/j.envint.2019.03.056 |
| 45 |
SHI X , LI Y , YANG Y , et al. High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China[J]. J Hazard Mater, 2021, 406, 124298.
doi: 10.1016/j.jhazmat.2020.124298 |
| 46 |
WANG Z , FU Y , SCHWARZ S , et al. Genetic environment of colistin resistance genes mcr-1 and mcr-3 in escherichia coli from one pig farm in China[J]. Vet Microbiol, 2019, 230, 56- 61.
doi: 10.1016/j.vetmic.2019.01.011 |
| 47 |
YUAN Q , ZHAI Y , MAO B , et al. Antibiotic resistance genes and intI1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters[J]. Ecotoxicol Environ Saf, 2018, 161, 251- 259.
doi: 10.1016/j.ecoenv.2018.05.049 |
| 48 |
HU X , CHEN Y , XU H , et al. Genomic epidemiology and transmission characteristics of mcr1-positive colistin-resistant Escherichia coli strains circulating at natural environment[J]. Sci Total Environ, 2023, 882, 163600.
doi: 10.1016/j.scitotenv.2023.163600 |
| 49 |
XING S , WU R , CHEN Y , et al. Elimination and analysis of mcr-1 and blaNDM-1 in different composting pile layers under semipermeable membrane composting with copper-contaminated poultry manure[J]. Bioresour Technol, 2021, 332, 125076.
doi: 10.1016/j.biortech.2021.125076 |
| 50 |
XIE W , WANG Y , YUAN J , et al. Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers[J]. Environ Int, 2022, 162, 107157.
doi: 10.1016/j.envint.2022.107157 |
| 51 | ZHENG B , HUANG C , XU H , et al. Occurrence and genomic characterization of esbl-producing, mcr-1-harboring Escherichia coli in farming soil[J]. Front Microbiol, 2017, 8, 8- 2510. |
| 52 |
OLIVEIRA C C , LOPES E S , BARBOSA D R , et al. Occurrence of the colistin resistance mcr-1 gene in soils from intensive vegetable production and native vegetation[J]. Eur J Soil Sci, 2019, 70 (4): 876- 881.
doi: 10.1111/ejss.12832 |
| 53 |
LIU B , LI X , ZHANG Q , et al. Colistin-resistant mcr-positive enterobacteriaceae in fresh vegetables, an increasing infectious threat in China[J]. Int J Antimicrob, 2019, 54 (1): 89- 94.
doi: 10.1016/j.ijantimicag.2019.04.013 |
| 54 |
YANG F , SHEN C , ZHENG X , et al. Plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli and Klebsiella pneumoniae isolated from market retail fruits in Guangzhou, China[J]. Infect Drug Resist, 2019, 12, 385- 389.
doi: 10.2147/IDR.S194635 |
| 55 |
OH S , SONG J , KIM J , et al. Increasing prevalence of multidrug-resistant mcr-1-positive Escherichia coli isolates from fresh vegetables and healthy food animals in South Korea[J]. Int J Infect Dis, 2020, 92, 53- 55.
doi: 10.1016/j.ijid.2019.12.025 |
| 56 |
LIU B , SONG F . Emergence of two Escherichia coli strains co-harboring mcr-1 and blaNDM in fresh vegetables from China[J]. Infect Drug Resist, 2019, 12, 2627- 2635.
doi: 10.2147/IDR.S211746 |
| 57 |
ZHU D , CHEN Q , JING D , et al. Antibiotic resistance genes in the soil ecosystem and planetary health: progress and prospect[J]. Sci Sin Vitae, 2019, 49 (12): 1652- 1663.
doi: 10.1360/SSV-2019-0267 |
| 58 |
XU H , CHEN Z , HUANG R , et al. Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers[J]. Environ Sci, 2021, 55 (15): 10462- 10470.
doi: 10.1021/acs.est.1c01615 |
| 59 |
SISMOVA P , SUKKAR I , KOLIDENTSEV N , et al. Plasmid-mediated colistin resistance from fresh meat and slaughtered animals in the czech republic: nation-wide surveillance 2020-2021[J]. Microbiol Spectrum, 2023, 11 (5): e0060923.
doi: 10.1128/spectrum.00609-23 |
| 60 | MIGURA-GARCIA L , GONZÁLEZ-LÓPEZ J J , MARTINEZ-URTAZA J , et al. mcr-colistin resistance genes mobilized by IncX4, IncHI2, and inci2 plasmids in escherichia coli of pigs and white stork in Spain[J]. Front Microbiol, 2019, 10, 3072. |
| 61 | GUENTHER S , FALGENHAUER L , SEMMLER T , et al. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms[J]. J Antimicrob Chemother, 2017, 72 (5): 1289- 1292. |
| 62 | 易灵娴, 刘艺云, 吴仁杰, 等. 质粒介导的黏菌素耐药基因mcr-1研究进展[J]. 遗传, 2017, 39 (2): 17. |
| YI L X , LIU Y Y , WU R J , et al. Research progress on the plasmid-mediated colistin resistance gene mcr-1[J]. Yi Chuan, 2017, 39 (2): 17. | |
| 63 |
CHI F , SHEN S , CHENG H , et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology[J]. Appl Environ, 2005, 71 (11): 7271- 7278.
doi: 10.1128/AEM.71.11.7271-7278.2005 |
| 64 |
LI C , GUO C , YANG T , et al. Whole-genome analysis of blandm-bearing proteus mirabilis isolates and mcr-1-positive Escherichia coli isolates carrying blandm from the same fresh vegetables in China[J]. Foods, 2023, 12 (3): 492.
doi: 10.3390/foods12030492 |
| 65 |
SHEN C , ZHONG L , YANG Y , et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study[J]. The Lancet Microbe, 2020, 1 (1): e34- e43.
doi: 10.1016/S2666-5247(20)30005-7 |
| 66 |
USUI M , NOZAWA Y , FUKUDA A , et al. Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive[J]. J Global Antimicrob Resist, 2021, 24, 383- 386.
doi: 10.1016/j.jgar.2021.01.016 |
| 67 |
SUN X , ZHANG L , MENG J , et al. The characteristics of mcr-bearing plasmids in clinical Salmonella enterica in Sichuan, China, 2014 to 2017[J]. Front Cell Infect Microbiol, 2023, 13, 1240580.
doi: 10.3389/fcimb.2023.1240580 |
| 68 |
WANG Q , WANG W , ZHU Q , et al. The prevalent dynamic and genetic characterization of mcr-1 encoding multidrug resistant Escherichia coli strains recovered from poultry in Hebei, China[J]. J Global Antimicrob Resist, 2024, 38, 354- 362.
doi: 10.1016/j.jgar.2024.04.001 |
| 69 | LU X , ZHANG P , DU P , et al. Prevalence and genomic characteristics of mcr-positive Escherichia coli strains isolated from humans, pigs, and foods in China[J]. Microbiol Spectrum, 2023, 11 (3): 4522- 4569. |
| 70 | YIN Y , QIU L , WANG G , et al. Emergence and transmission of plasmid-mediated mobile colistin resistance gene mcr-10 in humans and companion animals[J]. Microbiol Spectrum, 2022, 10 (5): 2022- 2097. |
| 71 |
BOTTERY M J , PITCHFORD J W , FRIMAN V P . Ecology and evolution of antimicrobial resistance in bacterial communities[J]. Isme J, 2021, 15 (4): 939- 948.
doi: 10.1038/s41396-020-00832-7 |
| 72 |
孙赫, 张亚超, 上官振坤, 等. 多黏菌素耐药基因的变异特征及传播规律的研究现状[J]. 畜牧兽医学报, 2018, 49 (10): 2102- 2111.
doi: 10.11843/j.issn.0366-6964.2018.10.006 |
|
SUN H , ZHANG Y C , SHANGGUAN Z K , et al. Research progress on the variation characteristic and dissemination of colistin resistance genes[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (10): 2102- 2111.
doi: 10.11843/j.issn.0366-6964.2018.10.006 |
|
| 73 |
AHMED Z S , ELSHAFIEE E A , KHALEFA H S , et al. Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt[J]. Antimicrob Resist Infect Control, 2019, 8 (1): 197- 2019.
doi: 10.1186/s13756-019-0657-5 |
| 74 | 宗劲, 徐凯进, 黄莹, 等. 质粒介导黏菌素耐药机制研究进展[J]. 中国微生态学杂志, 2021, 33 (1): 120- 124. |
| ZONG J , XU K J , HUANG Y , et al. Progress in research on plasmid-mediated colistin resistance[J]. Chinese Journal of Microecology, 2021, 33 (1): 120- 124. | |
| 75 |
LI L , ZHU D , YI X , et al. Combined pollution of arsenic and polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas[J]. J Environ Sci, 2021, 109, 171- 180.
doi: 10.1016/j.jes.2021.04.004 |
| 76 | 邹威, 金彩霞, 魏闪, 等. 华北地区不同规模畜禽养殖场粪便中抗生素抗性基因污染特征[J]. 农业环境科学学报, 2020, 39 (11): 2640- 2652. |
| ZOU W , JIN C X , WEI S , et al. Occurrence of antibiotic resistance genes in livestock farms of different scales in North China[J]. Journal of Agro-Environment Science, 2020, 39 (11): 2640- 2652. | |
| 77 |
FIGUEIREDO R , CARD R M , NUNEZ-GARCIA J , et al. Multidrug-resistant Salmonella enterica isolated from food animal and foodstuff may also be less susceptible to heavy metals[J]. Foodborne Pathog Dis, 2019, 16 (3): 166- 172.
doi: 10.1089/fpd.2017.2418 |
| 78 |
SHEN Y , ZHOU H , XU J , et al. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China[J]. Nat Microbiol, 2018, 3 (9): 1054- 1062.
doi: 10.1038/s41564-018-0205-8 |
| 79 |
TRUNG N V , MATAMOROS S , CARRIQUE-MAS J J , et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam[J]. Emerg Infect Dis, 2017, 23 (3): 529- 532.
doi: 10.3201/eid2303.161553 |
| 80 | WANG Y , LIU Y , FU Y , et al. Microplastic diversity increases the abundance of antibiotic resistance genes in soil[J]. Nat Commun, 2024, 15 (1): 15, 2024- 9788. |
| 81 |
SHEN Y , ZHANG R , SCHWARZ S , et al. Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes[J]. Environ Microbiol, 2020, 22 (7): 2469- 2484.
doi: 10.1111/1462-2920.14961 |
| 82 |
JIANG B , TIAN J , CHEN H , et al. Heavy metals migration and antibiotics removal in anaerobic digestion of swine manure with biochar addition[J]. Environ Technol Innovation, 2022, 27, 102735.
doi: 10.1016/j.eti.2022.102735 |
| 83 | 尹天奇, 孙兴滨, 高浩泽, 等. 高温持续时间对鸡粪堆肥中多重耐药菌、接合型质粒及耐药基因消减特征的影响[J]. 农业环境科学学报, 2023, 42 (9): 2108- 2119. |
| YIN T Q , SUN X B , GAO H Z , et al. Impact of high-temperature duration on the reduction dynamics of multidrug-resistant bacteria, conjugative plasmids, and antibiotic resistance genes in chicken manure composting[J]. Journal of Agro-Environment Science, 2023, 42 (9): 2108- 2119. | |
| 84 |
RIBEIRO S , MOURAO J , NOVAIS A , et al. From farm to fork: colistin voluntary withdrawal in portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat[J]. Environ Microbiol, 2021, 23 (12): 7563- 7577.
doi: 10.1111/1462-2920.15689 |
| 85 |
SUN X , LIDDICOAT C , TIUNOV A , et al. Harnessing soil biodiversity to promote human health in cities[J]. npj Urban Sustain, 2023, 3 (1): 5.
doi: 10.1038/s42949-023-00086-0 |
| [1] | YANG Xin, WANG Shaoyu, TONG Chang, PENG Zhitao, CAI Shenghuang, HUANG Junxiong, XU Jiaojiao, WEN Xin, WU Yinbao. Research Progress on the Horizontal Gene Transfer of Antibiotic Resistance Genes from Livestock and Poultry Manure [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4279-4293. |
| [2] | ZHAO Qiuyun, SHEN Huanjun, SONG Houhui, JIANG Hongxia, XU Chenggang. Isolation and Characterization of Salmonella Phage P1-CTX Carrying blaCTX-M-27 [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3519-3527. |
| [3] | WU Sujuan, LIN Changcheng, WAN Peng, LI Jie, LU Yixing, HU Jianxin, PENG Xianfeng, ZENG Zhenling. Synergistic Antimicrobial Effect of Isopropoxy Benzene Guanidine Combined with Colistin on Klebsiella pneumoniae in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5792-5801. |
| [4] | Kangwei HUANG, Pengcheng ZHOU, Chenyu TIAN, Yi LAN, Zhiliang SUN. First Report of Colistin-Resistant Escherichia coli Carrying mcr-1 IncI2(Delta) Plasmids from Pigs in Hunan Province, China [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5278-5286. |
| [5] | TAO Jie, LI Benqiang, CHENG Jinghua, SHI Ying, LIU Peihong, LIU Huili. Differential Analysis and the Antibiotic Resistance Genes Prediction of Gut Microbiota in Pigeon [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5293-5300. |
| [6] | SUN Jiaqi, YANG Shijing, TAN Ying, BAI Lin, GUO Shining, SHI Dayou, LIU Cui. Protective Effect of Sulfated Codonopsis pilosula Polysaccharide on RAW264.7 Cell Damage Induced by H2O2 and Acute Alcohol Injury in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1945-1957. |
| [7] | LIU Bo, CHEN Rong, CHEN Kai, PENG Ding, WANG Mi. Control Effects of Sulfated Yeast Glucan on Chicken Coccidiosis [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 1126-1133. |
| [8] | ZHAO Jiaqi, WEN Yongli, AN Yajing, LI Ziqian, QI Peisen, LI Qiang, HOU Dingchao. Response of Antibiotic Resistance Genes (ARGs) in Rumen of Yak to Three Exogenous Stimulating Factors [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 1126-1137. |
| [9] | LUO Mengyou, TANG Cheng, ZHAO Yanying, CHEN Juan, TANG Junni. The Study of Copper Sulfate Solution Induction on the Resistance Effect of Methicillin-resistant Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 841-850. |
| [10] | DENG Wenwen, LI Caiwu, JIN Lei, LI Guo, WU Honglin, ZHANG Guiquan, WEI Rongping, CHEN Rui, WANG Minglei, HE Yongguo, LI Ti, LI Desheng, ZHANG Hemin, HUANG Yan, ZOU Likou. Transcriptome Analysis of Microbiome and Parasites in Feces of Giant Pandas [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11): 2812-2824. |
| [11] | GAO Junying, ZHANG Dongchao, LI Xuan, WANG Hualin, JIANG Ning. The Characteristic Study of Toxoplasma gondii Surface Antigen SAG1 Adhering to Heparan Sulfate on the Host Cell Surface [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(9): 1874-1881. |
| [12] | ZHAI Yajun, LIANG Jun, WEI Dandan, SUN Huarun, PAN Yushan, WU Hua, LIU Jianhua, HU Gongzheng. Regulative Mechanisms of CpxR on the Colistin Susceptibility of Salmonella enterica Serovar Typhimurium through the Colistin Resistance-related Genes pmrB and phoQ [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(6): 1284-1291. |
| [13] | XU Huan-ye, LI Mei-ling, CHEN Li-gong, WANG Li-ye, MENG Li-jia, CUI Huan, ZHANG Cheng, BAI Xiao, WANG Ying-chun, DONG Shi-shan. Berberine Sulfate Affects TGF-β1, EGFR, EGF and IGF1 mRNA Expression in Rotavirus-infected IPEC-J2 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(10): 2283-2291. |
| [14] | SUN He, ZHANG Ya-chao, SHANGGUAN Zhen-kun, ZHANG Yi, FAN Ruo-lan, LI Hang, GUAN Song-lei, ZHANG Lin-bo. Research Progress on the Variation Characteristic and Dissemination of Colistin Resistance Genes [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(10): 2102-2111. |
| [15] | LI Cong,YUAN Li-gang,ZHANG Yong. The Distribution of Extracellular Matrix Proteins in Small-tail Han Sheep Epididymis in Plateau [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(8): 1565-1573. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||