Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (8): 3621-3630.doi: 10.11843/j.issn.0366-6964.2025.08.006
• Review • Previous Articles Next Articles
MAO Qianqian1,2(), ZHANG Yan1,2,*(
), ZHOU Xiangying2, SHAN Cuiyan2, GUO Chaoqun2, LU Tinghuan2, WANG Li2
Received:
2024-12-31
Online:
2025-08-23
Published:
2025-08-28
Contact:
ZHANG Yan
E-mail:772074848@qq.com;zhangyan@vlandgroup.com
CLC Number:
MAO Qianqian, ZHANG Yan, ZHOU Xiangying, SHAN Cuiyan, GUO Chaoqun, LU Tinghuan, WANG Li. Application of Nanotechnology and CRISPR Gene Diagnostics in Precision Detection of Livestock Parasitic Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3621-3630.
Table 1
Advantages and disadvantages of major traditional detection methods"
诊断方法 Diagnostic method | 优势 Advantage | 缺点 Disadvantage | 参考文献 Reference |
显微镜检测 Microscopic inspection | 快速、直观; 成本相对较低; 简单易行 | 对操作者经验和技能要求高; 低浓度或非活跃阶段检出率低; 易发生鉴别错误; 无法提供分子层面信息 | [ |
免疫学方法 Immunological methods | 高通量、高灵敏度、低成本; 适用于早期或亚临床感染检测 | 依赖宿主免疫反应,受多种因素影响; 需要较长窗口期,可能出现假阴性; 需要设备支持,存在交叉反应可能性 | [ |
分子生物学方法 Molecular biology methods | 高灵敏度和特异性; 直接检测遗传物质; 早期发现感染; 适用于混合感染 | 操作复杂,设备要求高,成本昂贵; 受样本提取质量、试剂选择和引物设计影响; 无法直接提供寄生虫数量或分布信息 | [ |
1 | LANE J , KELLY T , BIRD B , et al. A one health approach to reducing livestock disease prevalence in developing countries: advances, challenges, and prospects[J]. Annu Rev Anim Biosci, 2025, 2 (13): 277- 302. |
2 |
VEROCAI G G , CHAUDHRY U N , LEJEUNE M . Diagnostic methods for detecting internal parasites of livestock[J]. Vet Clin Food Anim, 2020, 36 (1): 125- 143.
doi: 10.1016/j.cvfa.2019.12.003 |
3 |
ZHANG C , JIANG H , JIANG H , et al. Deep learning for microscopic examination of protozoan parasites[J]. Comput Struct Biotechnol J, 2022, 20, 1036- 1043.
doi: 10.1016/j.csbj.2022.02.005 |
4 |
陈秀琴, 林甦, 张世忠, 等. 基于CRISPR/Cas系统的生物传感器在动物疫病诊断中的应用[J]. 畜牧兽医学报, 2024, 55 (7): 2859- 2876.
doi: 10.11843/j.issn.0366-6964.2024.07.008 |
CHEN X Q , LIN S , ZHANG S H , et al. Application of CRISPR/Cas-based biosensors for animal diseases diagnosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2859- 2876.
doi: 10.11843/j.issn.0366-6964.2024.07.008 |
|
5 |
GABALLAH M , BARAKAT A , AHMED N , et al. Histopathological and biochemical assessment of the therapeutic effect of gold nanoparticles on experimental chronic toxoplasmosis[J]. Parasitol United J, 2021, 14 (2): 171- 177.
doi: 10.21608/puj.2021.73358.1117 |
6 | BASHIR M , KHAN N , MUSHTAQ N , et al. Nanotechnology in parasite control: new therapeutic horizons[J]. Complement Altern Med: Nanotechnol-Ⅱ, 2024, 8, 208-- 217. |
7 |
HESHMATI F , SANGAR S G , AMOOZADEHSAMAKOOSH A , et al. The role of metallic nanoparticles in the prevention and treatment of parasitic diseases in poultry[J]. Worlds Poult Sci J, 2023, 2 (3): 13- 19.
doi: 10.58803/jwps.v2i3.15 |
8 |
MUKHERJEE S , SARKAR S , SARKAR S , et al. CRISPR-Cas based nano-sensors in water pathogen detection[J]. Int J Res Adv Electron Eng, 2024, 5 (1): 7- 10.
doi: 10.22271/27084558.2024.v5.i1a.32 |
9 | SHAMBHU S , KOUNDAL D , DAS P . Deep learning-based computer assisted detection techniques for malaria parasite using blood smear images[J]. Int J Adv Technol Eng Exp, 2023, 10 (105): 990. |
10 |
SIAGIAN F E . The use of immersion oil in parasitology light microscopic examination[J]. Int J Pathogen Res, 2024, 13 (2): 1- 8.
doi: 10.9734/ijpr/2024/v13i2274 |
11 | ASHFRAF M , MUSTAFA B E , WAHAAB A , et al. Conventional and molecular diagnosis of parasites[M]. Parasitism and Parasitic Control in Animals: Strategies for the Developing World. GB: CABI, 2023: 56- 72. |
12 |
CHOI M H . Serological diagnosis of tissue-invading parasites in Korea[J]. Ann Clin Microbiol, 2024, 27 (2): 81- 91.
doi: 10.5145/ACM.2024.27.2.5 |
13 |
TOALEB N I , ABOELSOUED D , ABDEL MEGEED K N , et al. A novel designed sandwich ELISA for the detection of Echinococcus granulosus antigen in camels for diagnosis of cystic echinococcosis[J]. Trop Med Infect Dis, 2023, 8 (8): 400.
doi: 10.3390/tropicalmed8080400 |
14 |
AFTAB A , RAINA O K , MAXTON A , et al. Advances in diagnostic approaches to fasciola infection in animals and humans: an overviews[J]. J Helminthol, 2024, 98, e12.
doi: 10.1017/S0022149X23000950 |
15 |
NUR HAFIZAH S , NOOR IZANI N J , AHMAD NAJIB M , et al. Immunodiagnosis of fascioliasis in ruminants by ELISA method: A mini-review[J]. Malays J Med Sci, 2023, 30 (4): 25- 32.
doi: 10.21315/mjms2023.30.4.3 |
16 |
BAKHSHIPOUR F , ZIBAEI M , ROKNI M B , et al. Comparative evaluation of real-time PCR and ELISA for the detection of human fascioliasis[J]. Sci Rep, 2024, 14 (1): 3865.
doi: 10.1038/s41598-024-54602-y |
17 |
TSOKANA C N , SYMEONIDOU I , SIOUTAS G , et al. Current applications of digital PCR in veterinary parasitology: an overview[J]. Parasitologia, 2023, 3 (3): 269- 283.
doi: 10.3390/parasitologia3030028 |
18 |
LEI S , CHEN S , ZHONG Q . Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects[J]. Int J Biol Macromol, 2021, 184, 750- 759.
doi: 10.1016/j.ijbiomac.2021.06.132 |
19 |
杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54 (8): 3183- 3194.
doi: 10.11843/j.issn.0366-6964.2023.08.006 |
YANG F S , GU X B . A review on applications of PCR technology in the diagnosis of parasitic diseases in the past 10 years[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3183- 3194.
doi: 10.11843/j.issn.0366-6964.2023.08.006 |
|
20 | 高扬, 董泽丰, 雅雪蓉, 等. 病原体多重PCR检测技术研究进展[J]. 江苏预防医学, 2024, 35 (2): 243- 247. |
GAO Y , DONG Z F , YA X R , et al. Research progress on multiplex PCR detection technology for pathogens[J]. Jiangsu Journal of Preventive Medicine, 2024, 35 (2): 243- 247. | |
21 |
AHMAD A , IMRAN M , AHSAN H . Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases[J]. Pharmaceutics, 2023, 15, 1630.
doi: 10.3390/pharmaceutics15061630 |
22 | CERBU C , WHITE J C , SABLIOV C M . Nanotechnology in livestock: improving animal production and health[M]. Nano-Enabled Sustainable and Precision Agriculture. Academic Press, 2023: 181- 213. |
23 | RATHER S A , MUSTAFA R A , ASHRAF M V , et al. Implications of nano-biosensors in the early detection of neuroparasitic diseases[M]. Theranostic Applications of Nanotechnology in Neurological Disorders. Singapore: Springer Nature Singapore, 2024: 43- 83. |
24 | ACHI F , ATTAR AM , LAHCEN A A . Electrochemical nanobiosensors for the detection of cancer biomarkers in real samples: Trends and challenges[J]. Trends Anal Chem, 2023, 170, 117423. |
25 |
TIWARI R , GUPTA R P , SINGH V K , et al. Nanotechnology-based strategies in parasitic disease management: from prevention to diagnosis and treatment[J]. ACS Omega, 2023, 8 (45): 42014- 42027.
doi: 10.1021/acsomega.3c04587 |
26 |
HAJJAFARI A , SADR S , SANTUCCIU C , et al. Advances in detecting cystic echinococcosis in intermediate hosts and new diagnostic tools: a literature review[J]. Vet Sci, 2024, 11 (6): 227.
doi: 10.3390/vetsci11060227 |
27 |
KRÓL G , FORTUNKA K , MAJCHRZAK M , et al. Metallic nanoparticles and core-shell nanosystems in the treatment, diagnosis, and prevention of parasitic diseases[J]. Pathogens, 2023, 12 (6): 838.
doi: 10.3390/pathogens12060838 |
28 |
ARCAS A S , JARAMILLO L , COSTA N S , et al. Localized surface plasmon resonance-based biosensor on gold nanoparticles for Taenia solium detection[J]. Appl Opt, 2021, 60, 8137- 8144.
doi: 10.1364/AO.432990 |
29 |
SALIMI M , KESHAVARZ-VALIAN H , MOHEBALI M , et al. Electrochemical immunosensor based on carbon nanofibers and gold nanoparticles for detecting anti-Toxoplasma gondii IgG antibodies[J]. Microchim Acta, 2023, 190 (9): 367.
doi: 10.1007/s00604-023-05928-3 |
30 | ŞANLI S . Design of a novel electrochemical immunosensor for Toxoplasma gondii detection based on gold nanoparticle/chitosan decorated screen printed electrode[J]. J Sci Technol, 2023, 16 (3): 840- 853. |
31 |
ABD ELGHANI H M , SABRY N M , ABDELSALAM I M , et al. Performance of quantum dot nanobeads-based immunoassay in diagnosis of toxoplasmosis[J]. Parasitologists United J, 2021, 14 (2): 204- 213.
doi: 10.21608/puj.2021.83445.1123 |
32 | LI X , WANG Q , LI X , et al. Carbon nanospheres dual-spectral-overlapped fluorescence quenching lateral flow immunoassay for rapid diagnosis of toxoplasmosis in humans[J]. J Pharm Biomed Anal, 2024, 24, 115986. |
33 |
SAFARPOUR H , MAJDI H , MASJEDI A , et al. Development of optical biosensor using protein A-conjugated chitosan-gold nanoparticles for diagnosis of cystic echinococcosis[J]. Biosensors, 2021, 11, 134.
doi: 10.3390/bios11050134 |
34 |
SOUSA S , CASTRO A , CORREIA DA COSTA J M , et al. Biosensor based immunoassay: a new approach for serotyping of Toxoplasma gondii[J]. Nanomaterials, 2021, 11 (8): 2065.
doi: 10.3390/nano11082065 |
35 |
TABATABAEI M S , ISLAM R , AHMED M . Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review[J]. Anal Chim Acta, 2021, 1143, 250- 266.
doi: 10.1016/j.aca.2020.08.030 |
36 |
ALY N S , KIM H S , MAREI Y M , et al. Diagnosis of toxoplasmosis using surface antigen grade 1 detection by ELISA, nano-gold ELISA, and PCR in pregnant women[J]. Int J Nanomed, 2023, 18, 1335- 1345.
doi: 10.2147/IJN.S401876 |
37 | KHODADADI A , MADANI R , ATYABI N . Development of nano-ELISA method for serological diagnosis of toxoplasmosis in mice[J]. Arch Razi Inst, 2020, 75 (4): 419. |
38 |
KAMEL H H , ELLEBOUDY N A , MOHAMMAD OS , et al. Diagnosis of experimental trichinosis by nano-based ELISA and nano-based latex agglutination test compared with traditional sandwich ELISA[J]. QJM: An Int J Med, 2024, 117 (Supplement_1): hcae070.434.
doi: 10.1093/qjmed/hcae070.434 |
39 |
YIN Y L , WANG Y , LAI P , et al. Establishment and preliminary application of nanoparticle-assisted PCR assay for detection of Cryptosporidium spp[J]. Parasitol Res, 2021, 120, 1837- 1844.
doi: 10.1007/s00436-021-07101-2 |
40 |
YAO Q , YANG X , WANG Y , et al. Development and preliminary evaluation of a nanoparticle-assisted PCR assay for the detection of Cryptosporidium parvum in calves[J]. Animals, 2022, 12 (15): 1953.
doi: 10.3390/ani12151953 |
41 |
KIM M J , PARK S J , PARK H . Trend in serological and molecular diagnostic methods for Toxoplasma gondii infection[J]. Eur J Med Res, 2024, 29, 520.
doi: 10.1186/s40001-024-02055-4 |
42 |
IPPODRINO R , RICCI F , TREGIA I , et al. Enhancement of CRISPR/Cas12a trans-cleavage activity using hairpin DNA reporters[J]. Nucleic Acids Res, 2022, 50, 8377- 8391.
doi: 10.1093/nar/gkac578 |
43 |
包斌武, 邹惠影, 李俊良, 等. 基因编辑技术的研究进展[J]. 畜牧兽医学报, 2025, 56 (1): 1- 14.
doi: 10.11843/j.issn.0366-6964.2025.01.001 |
BAO B W , ZOU H Y , LI J L , et al. Research progress in gene editing technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (1): 1- 14.
doi: 10.11843/j.issn.0366-6964.2025.01.001 |
|
44 |
KAMINSKI M M , ABUDAYYEH O O , GOOTENBERG J S , et al. CRISPR-based diagnostics[J]. Nat B iomed Eng, 2021, 5, 643- 656.
doi: 10.1038/s41551-021-00760-7 |
45 |
LI X , DANG Z , TANG W , et al. Detection of parasites in the field: the ever-innovating CRISPR/Cas12a[J]. Biosensors, 2024, 14 (3): 145.
doi: 10.3390/bios14030145 |
46 |
QIU M , ZHOU X M , LIU L . Improved strategies for CRISPR-Cas12-based nucleic acids detection[J]. J Anal Test, 2022, 6, 44- 52.
doi: 10.1007/s41664-022-00212-4 |
47 |
ZHAO X , LI S , LIU G , et al. A versatile biosensing platform coupling CRISPR-Cas12a and aptamers for detection of diverse analytes[J]. Sci Bull, 2021, 66 (1): 69- 77.
doi: 10.1016/j.scib.2020.09.004 |
48 |
KHARISMASARI C Y , IRKHAM , ZEIN M I H L , et al. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring[J]. Bioelectrochemistry, 2024, 155, 108600.
doi: 10.1016/j.bioelechem.2023.108600 |
49 |
MA Q N , WANG M , ZHENG L B , et al. RRAA-Cas12a-Tg: a nucleic acid detection system for Toxoplasma gondii based on CRISPR-Cas12a combined with recombinase-aided amplification (RAA)[J]. Microorganisms, 2021, 9 (8): 1644.
doi: 10.3390/microorganisms9081644 |
50 |
LEI R , LI L , WU P , et al. RPA/CRISPR/Cas12a-based on-site and rapid nucleic acid detection of Toxoplasma gondii in the environment[J]. ACS Synth Biol, 2022, 11, 1772- 1781.
doi: 10.1021/acssynbio.1c00620 |
51 |
WANG X , CHENG M , YANG S , et al. CRISPR/Cas12a combined with RPA for detection of T. gondii in mouse whole blood[J]. Parasites Vectors, 2023, 16, 256.
doi: 10.1186/s13071-023-05868-0 |
52 |
HUANG F , LI X , ZHOU Y , et al. Optimization of CRISPR/Cas12a detection assay and its application in the detection of Echinococcus granulosus[J]. Vet Parasitol, 2024, 331, 110276.
doi: 10.1016/j.vetpar.2024.110276 |
53 |
CHERKAOUI D , MESQUITA S G , HUANG D , et al. CRISPR-assisted test for Schistosoma haematobium[J]. Sci Rep, 2023, 13, 4990.
doi: 10.1038/s41598-023-31238-y |
54 |
WANG Y , YU F , FU Y , et al. End-point diagnostics of Giardia duodenalis assemblages A and B by combining RPA with CRISPR/Cas12a from human fecal samples[J]. Parasite Vectors, 2024, 17 (1): 463.
doi: 10.1186/s13071-024-06559-0 |
55 |
SUTIPATANASOMBOON A , WONGSANTICHON J , SAKDEE S , et al. RPA-CRISPR/Cas12a assay for the diagnosis of bovine Anaplasma marginale infection[J]. Sci Rep, 2024, 14, 7820.
doi: 10.1038/s41598-024-58169-6 |
56 |
YANG K , BI M , MO X . CRISPR/Cas12a, combined with recombinase polymerase amplification (RPA) reaction for visual detection of Leishmania species[J]. Microchem J, 2024, 207, 112283.
doi: 10.1016/j.microc.2024.112283 |
57 |
HUANG T , LI L , LI J , et al. Rapid, sensitive, and visual detection of Clonorchis sinensis with an RPA-CRISPR/Cas12a-based dual readout portable platform[J]. Int J Biol Macromol, 2023, 249, 125967.
doi: 10.1016/j.ijbiomac.2023.125967 |
58 |
WANG L , LI X , LI L , et al. Establishment of an ultrasensitive and visual detection platform for Neospora caninum based on the RPA-CRISPR/Cas12a system[J]. Talanta, 2024, 269, 125413.
doi: 10.1016/j.talanta.2023.125413 |
59 |
WANG Y , YU F , ZHANG K , et al. End-point RPA-CRISPR/Cas12a-based detection of Enterocyto-zoon bieneusi nucleic acid: rapid, sensitive and specific[J]. BMC Vet Res, 2024, 20, 540.
doi: 10.1186/s12917-024-04391-3 |
60 |
ZHAO L , WANG H , CHEN X , et al. Agarose hydrogel-boosted one-tube RPA-CRISPR/Cas12a assay for robust point-of-care detection of zoonotic nematode Anisakis[J]. J Agric Food Chem, 2024, 72 (14): 8257- 8268.
doi: 10.1021/acs.jafc.4c00204 |
61 | TAHERI T , DAVARPANAH E , SAMIMI-RAD K , et al. PUF proteins as critical RNA-binding proteins in TriTryp parasites: a review article[J]. Iran J Parasitol, 2024, 19 (2): 192- 206. |
62 |
RAJAN A , SHRIVASTAVA S , KUMAR A , et al. CRISPR-Cas system: from diagnostic tool to potential antiviral treatment[J]. Appl Microbiol Biotechnol, 2022, 106, 5863- 5877.
doi: 10.1007/s00253-022-12135-2 |
63 | MACGREGOR S R . Development of CRISPR/Cas13a-based assays for the diagnosis of Schistosomiasis[J]. EBioMedicine, 2022, 94, 104730. |
64 |
YANG Z , WANG J , QI Y , et al. A novel detection method based on MIRA-CRISPR/Cas13a-LFD targeting the repeated DNA sequence of Trichomonas vaginalis[J]. Parasites Vectors, 2024, 17 (1): 14.
doi: 10.1186/s13071-023-06106-3 |
65 |
WU Y X , SADIQ S , JIAO X H , et al. CRISPR/Cas13a-mediated visual detection: a rapid and robust method for early detection of Nosema bombycis in silkworms[J]. Insect Biochem Mol Biol, 2024, 175, 104203.
doi: 10.1016/j.ibmb.2024.104203 |
66 |
CUNNINGHAM C H , HENNELLY C M , LIN J T , et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping[J]. EBioMedicine, 2021, 68, 103415.
doi: 10.1016/j.ebiom.2021.103415 |
67 |
ZHAO J , LI Y , XUE Q , et al. A novel rapid visual detection assay for Toxoplasma gondii combining recombinase-aided amplification and lateral flow dipstick coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD)[J]. Parasite, 2022, 29, 21.
doi: 10.1051/parasite/2022021 |
68 |
HEJABI F , ABBASZADEH M S , TAJI S , et al. Nanocarriers: a novel strategy for the delivery of CRISPR/Cas systems[J]. Front Chem, 2022, 10, 957572.
doi: 10.3389/fchem.2022.957572 |
69 |
PHAN Q A , TRUONG L B , MEDINA-CRUZ D , et al. CRISPR/Cas-powered nanobiosensors for diagnostics[J]. Biosens Bioelectron, 2022, 197, 113732.
doi: 10.1016/j.bios.2021.113732 |
70 |
LEE R A , PUIG H , NGUYEN P Q , et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proc Natl Acad Sci, 2020, 117, 25722- 25731.
doi: 10.1073/pnas.2010196117 |
71 |
CHEN X , LIU X , YU Y , et al. FRET with MoS2 nanosheets integrated CRISPR/Cas12a sensors for robust and visual food-borne parasites detection[J]. Sensors Actuators B Chem, 2023, 395, 134493.
doi: 10.1016/j.snb.2023.134493 |
72 |
RAUCH J N , VALOIS E , SOLLEY S C , et al. A scalable, easy-to-deploy protocol for Cas13-based detection of SARS-CoV-2 genetic material[J]. J Clin Microbiol, 2021, 59, e02402-20.
doi: 10.1128/JCM.02402-20 |
73 |
ARIZTI SANZ J , BRADLEY A , ZHANG Y B , et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants[J]. Nat Biomed Eng, 2022, 6, 932- 943.
doi: 10.1038/s41551-022-00889-z |
74 |
BROGAN D J , CHAVERRA RODRIGUEZ D , LIN C P , et al. Development of a rapid and sensitive CasRx-based diagnostic assay for SARS-CoV-2[J]. ACS Sens, 2021, 6, 3957- 3966.
doi: 10.1021/acssensors.1c01088 |
75 |
GATTANI A , MANDAL S , AGRAWAL A , et al. CRISPR-based electrochemical biosensors for animal health: Recent advances[J]. Prog Biophys Mol Biol, 2024, 193, 7- 18.
doi: 10.1016/j.pbiomolbio.2024.09.001 |
76 |
LIU S , XU L , HUANG Z , et al. Recent advances of nanoparticles-assisted CRISPR/Cas biosensors[J]. Microchem J, 2024, 199, 109930.
doi: 10.1016/j.microc.2024.109930 |
77 |
ARSHAD F , YEE BJ , TING K P , et al. Nanomaterials as signal amplifiers in CRISPR/Cas biosensors: a path toward multiplex point-of-care diagnostics[J]. Microchem J, 2024, 207, 111826.
doi: 10.1016/j.microc.2024.111826 |
[1] | CHI Shunshun, WU Dan, WANG Nan, WANG Wanjie, NIE Yuxin, MU Yulian, LIU Zhiguo, ZHU Zhendong, LI Kui. Establishment and Application of A Detection Method for MSTN Gene-Edited Pigs Based on RPA-CRISPR/Cas12a [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3734-3748. |
[2] | ZHANG Chenmiao, CHEN Bowen, JIANG Linshu, TONG Jinjin. Potential Applications of Nanotechnology-Improved Flavonoids in Animal Health Management [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3107-3115. |
[3] | GENG Xiaoling, LI Ruifang, XU Weibing, DU Jingying, ZHANG Manyu, SUN Qing, JIANG Wei, MI Rongsheng, CHEN Zhaoguo, WANG Quan. Construction and Biological Function Research of TR and ROP5 Double Gene Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3408-3422. |
[4] | GAO Linna, JIANG Yingying, WANG Yue, SHI Qianqian, AN Zhenjiang, WANG Huili, SHEN Yangyang, CHEN Kunlin, ZHANG Leying. Construction of a Whole Genome Knockout Library of bMECs Based on CRISPR/Cas9 Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2711-2723. |
[5] | LI Xiaohan, LI Guiping, HUO Caiyun, ZHANG Qilong, SUN Yingjian, SUN Huiling. Class II CRISPR/Cas Systems and Their Applications in Bacterial Synthetic Biology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1608-1620. |
[6] | MA Xiuling, ZHANG Xinru, CHEN Ying, LIANG Hongyan, ABDUREYIMU Gulimire, WANG Liqin, LIN Jiapeng, LI Weijian, WANG Xuguang, WU Yangsheng. PDGFD Gene Editing in Altay Sheep Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1700-1711. |
[7] | XIE Yaru, JIN Haoyan, KONG Chen, CAI Bei, ZHANG Lingkai. Research Progress of CRISPR/Cas9 System in Livestock Germ Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 479-491. |
[8] | Xiuqin CHEN, Su LIN, Shizhong ZHANG, Min ZHENG, Meiqing HUANG. Application of CRISPR/Cas-based Biosensors for Animal Diseases Diagnosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2859-2876. |
[9] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[10] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[11] | ZHANG Duo, TENG Man, ZHANG Zhuo, LIU Jinling, ZHENG Luping, GE Siyu, HAN Fang, LUO Qin, CHAI Shujun, ZHAO Dong, YU Zuhua, LUO Jun. Development and Pathogenicity Analysis of a meq-gene-edited Candidate Marek's Disease Vaccine Strain Generated from a Hypervirulent MDV Variant [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5672-5683. |
[12] | Tingting ZHOU, Li LI, Yantao WU, Wenying LU, Baoquan FU, Hong YIN, Wanzhong JIA, Hongbin YAN. Progress on Single-cell Transcriptomics Technology and Its Applications in Research on Parasites [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4290-4301. |
[13] | Xiuhu DING, Zhiping LIN, Fang ZHAO, Kunlin CHEN, Jifeng ZHONG, Yan ZHANG, Yundong GAO, Huixia LI, Huili WANG, Jianli ZHANG, Qiang DING. Highly Efficient BLG Knockout in Bovine Mammary Epithelial Cells by Using CRISPR/Cas9 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4475-4488. |
[14] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[15] | LIU Hua, YIN Dongdong, SHAO Ying, SONG Xiangjun, WANG Zhenyu, PAN Xiaocheng, TU Jian, HE Changsheng, ZHU Liangqiang, QI Kezong. Detection of Porcine Epidemic Diarrhea Virus by Recombinase Aided Amplification Combined with CRISPR/Cas13a [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3991-3997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||