[1] HAVE P, MOVING V, SVANSSON V, et al. Coronavirus infection in mink (Mustela vision). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus[J]. Vet Microbiol, 1992, 31(1):1-10. [2] WOOD E N. An apparently new syndrome of porcine epidemic diarrhoea[J]. Vet Rec, 1977, 100(12):243-244. [3] SUN R Q, CAI R J, CHEN Y Q, et al. Outbreak of porcine epidemic diarrhea in suckling piglets, China[J]. Emerg Infect Dis, 2012, 18(1):161-163. [4] SONG D, PARK B. Porcine epidemic diarrhoea virus:a comprehensive review of molecular epidemiology, diagnosis, and vaccines[J]. Virus Genes, 2012, 44(2):167-175. [5] KOCHERHANS R, BRIDGEN A, ACKERMANN M, et al. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence[J]. Virus Genes, 2001, 23(2):137-144. [6] LIU J, LI L M, HAN J Q, et al. A TaqMan probe-based real-time PCR to differentiate porcine epidemic diarrhea virus virulent strains from attenuated vaccine strains[J]. Mol Cell Probes, 2019, 45:37-42. [7] YU X W, SHI L, LV X P, et al. Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus[J]. Virol J, 2015, 12:76. [8] KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK:nucleic acid detection with CRISPR nucleases[J]. Nat Protoc, 2019, 14(10):2986-3012. [9] MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448. [10] LI J, MACDONALD J, VON STETTEN F. Review:a comprehensive summary of a decade development of the recombinase polymerase amplification[J]. Analyst, 2019, 144(1):31-67. [11] CHANG Y F, DENG Y, LI T Y, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J]. Transbound Emerg Dis, 2020, 67(2):564-571. [12] LIU Y F, XU H P, LIU C, et al. CRISPR-Cas13a nanomachine based simple technology for Avian Influenza a (H7N9) virus on-site detection[J]. J Biomed Nanotechnol, 2019, 15(4):790-798. [13] QIN P W, PARK M, ALFSON K J, et al. Rapid and fully microfluidic ebola virus detection with CRISPR-Cas13a[J]. ACS Sens, 2019, 4(4):1048-1054. [14] 陈浩, 鞠永政, 王文文, 等. 猪流行性腹泻病毒SYBR Green I荧光定量RT-PCR检测方法的建立与应用[J]. 中国动物检疫, 2022, 39(9):110-114. CHEN H, JU Y Z, WANG W W, et al. Establishment and application of SYBR Green I fluorescent quantitative RT-PCR for detecting porcine epidemic diarrhea virus[J]. China Animal Health Inspection, 2022, 39(9):110-114. (in Chinese) [15] WANG D, FANG L R, XIAO S B. Porcine epidemic diarrhea in China[J]. Virus Res, 2016, 226:7-13. [16] LIANG W, ZHOU D N, GENG C, et al. Isolation and evolutionary analyses of porcine epidemic diarrhea virus in Asia[J]. PeerJ, 2020, 8:e10114. [17] ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675):280-284. [18] WANG Z L, LI X R, SHANG Y J, et al. Rapid differentiation of PEDV wild-type strains and classical attenuated vaccine strains by fluorescent probe-based reverse transcription recombinase polymerase amplification assay[J]. BMC Vet Res, 2020, 16(1):208. [19] 翟刚, 顾文源, 刘涛, 等. 猪流行性腹泻病毒TaqMan检测方法的建立及基于S基因的遗传变异分析[J]. 畜牧兽医学报, 2023, 54(2):847-854. ZHAI G, GU W Y, LIU T, et al. Establishment of TaqMan detection method of porcine epidemic diarrhea virus and analysis of genetic variation based on S gene[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2):847-854. (in Chinese) [20] 冉伟, 田宇, 李梓健, 等. 基于ORF3基因检测猪流行性腹泻病毒荧光定量RT-PCR方法的建立与应用[J]. 中国预防兽医学报, 2021, 43(4):394-398. RAN W, TIAN Y, LI Z J, et al. Development and preliminary application of ORF3-based fluorescent quantitative RT-PCR method for detection of porcine epidemic diarrhea virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(4):394-398. (in Chinese) |