Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4391-4402.doi: 10.11843/j.issn.0366-6964.2024.10.013
• Animal Genetics and Breeding • Previous Articles Next Articles
Lan FENG1(), Xue FENG1, Yulin MA1, Lingkai ZHANG1, Yanfen MA1, Dawei WEI1, Fen LI2, Lupei ZHANG3, Runjun YANG4, Yun MA1,*(
), Bei CAI1,*(
)
Received:
2024-03-25
Online:
2024-10-23
Published:
2024-11-04
Contact:
Yun MA, Bei CAI
E-mail:15202683541@163.com;mayun@nxu.edu.cn;caibei1115@163.com
CLC Number:
Lan FENG, Xue FENG, Yulin MA, Lingkai ZHANG, Yanfen MA, Dawei WEI, Fen LI, Lupei ZHANG, Runjun YANG, Yun MA, Bei CAI. Study on the Function of PPP5C Gene in Regulating the Proliferation and Differentiation of Bovine Adipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4391-4402.
Table 1
siRNA sequence information"
名称 Name | 上游引物序列(5′→3′) Upstream primer sequence | 下游引物序列(5′→3′) Downstream primer sequence |
Si-PPP5C-425 | GGUGAAGGUGAAGCCACAUTT | AUGUGGCUUCACCUUCACCTT |
Si-PPP5C-610 | GCAGGGUGACAAUCACCUUTT | AAGGUGAUUGUCACCCUGCTT |
Si-PPP5C-1081 | CCCAGUGCAUCAAUGGCAATT | UUGCCAUUGAUGCACUGGGTT |
对照Control | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
Table 2
Marker genes and internal reference gene amplification primers sequence information"
基因 Gene | 上游引物序列(5′→3′) Upstream primer sequence | 下游引物序列(5′→3′) Downstream primer sequence |
CDK1 | GAAGGGGTTCCTAGTACTGC | ATGAACTGACCAGGAGGG |
CDK2 | ATGAACTGACCAGGAGGG | GCCAGGAGTTACTTCTATGC |
PCNA | GAACCTCACCAGCATGTCCA | TACTAGTGCCAACGTGTCCG |
PPARγ | AGGATGGGGTCCTCATATCC | GTCAGCTCTTGGGAACGGAA |
C/EBPα | TGGACAAGAACAGCAACGAG | TTGTCACTGGTCAGCTCCAG |
FABP4 | AAGTCAAGAGCATCGTAA | CCAGCACCATCTTATCAT |
GAPDH | CCAACGTGTCTGTTGTGGAT | CTGCTTCACCACCTTCTTGA |
Fig. 2
Constructing a model of bovine precursor adipocyte differentiation and PPP5C temporal expression A. Oil red O staining of bovine precursor adipocytes at 0 and 6 d of differentiation; B. BODIPY staining of bovine precursor adipocytes at 0 and 6 d of differentiation; C. Detection of mRNA expression levels of C/EBPɑ in bovine precursor adipocytes differentiated at 0, 2, 4, 6 and 8 d by qRT-PCR; D. qRT-PCR was performed to detect the mRNA expression level of PPARγ in bovine precursor adipocytes at 0, 2, 4, 6 and 8 d of differentiation; E. qRT-PCR was performed to detect the mRNA expression level of PPP5C in bovine precursor adipocytes at 0, 2, 4, 6 and 8 d of differentiation. The data were expressed as "mean ±SEM", n=3, *P < 0.05, **P < 0.01, the same as below"
Fig. 3
PPP5C gene overexpression, interference efficiency assay A. The mRNA expression levels of PPP5C in bovine precursor adipocytes were detected by qRT-PCR after transfection with pcDNA3.1 (Control) and pcDNA3.1-PPP5C, respectively; B. qRT-PCR was used to detect the mRNA expression level of PPP5C in bovine precursor adipocytes after transfection with si-NC, si-PPP5C-425, si-PPP5C-610 and si-PPP5C-1081, respectively"
Fig. 4
Effect of interfering with PPP5C gene on bovine adipocyte proliferation A. The mRNA expression levels of CDK1, CDK2 and PCNA in bovine precursor adipocytes were detected by qRT-PCR after transfection with si-NC, si-PPP5C-425, respectively; B. Flow cytometry to detect the cell cycle of bovine precursor adipocytes after transfection with si-NC, si-PPP5C-425, respectively; C. Flow cytometry was used to detect the cell cycle value added rate of bovine precursor adipocytes after transfection with si-NC and si-PPP5C-425, respectively; D. EdU assay for cell proliferation after transfection of bovine precursor adipocytes with si-NC, si-PPP5C-425, respectively; E. EdU assay for cell proliferation rate of bovine precursor adipocytes after transfection with si-NC, si-PPP5C-425, respectively; F. CCK-8 assay for cell viability of bovine precursor adipocytes after transfection with si-NC, si-PPP5C-425, respectively"
Fig. 5
Effect of overexpression of PPP5C gene on bovine adipocyte proliferation A. The mRNA expression levels of CDK1, CDK2 and PCNA were detected by qRT-PCR in bovine precursor adipocytes transfected with pcDNA3.1 and pcDNA3.1-PPP5C, respectively; B. Flow cytometry was used to detect the cell cycle of bovine precursor adipocytes after transfection with pcDNA3.1, pcDNA3.1-PPP5C, respectively; C. Flow cytometry was used to detect the cell cycle value-added rate of bovine precursor adipocytes after transfection with pcDNA3.1 and pcDNA3.1-PPP5C, respectively; D. EdU assay for cell proliferation after transfection of bovine precursor adipocytes with pcDNA3.1, pcDNA3.1-PPP5C, respectively; E. EdU assay for cell proliferation rate of bovine precursor adipocytes after transfection with pcDNA3.1, pcDNA3.1-PPP5C, respectively; F. CCK-8 assay for cell viability of bovine precursor adipocytes after transfection with pcDNA3.1, pcDNA3.1-PPP5C, respectively"
Fig. 6
Effect of interfering with PPP5C gene on bovine adipocyte differentiation A. The mRNA expression levels of PPARγ, C/EBPα and FABP4 in bovine precursor adipocytes were detected by qRT-PCR after transfection with si-NC, si-PPP5C-425 and differentiation for 4 d, respectively; B. BODIPY staining after transfection of si-NC, si-PPP5C-425 to bovine precursor adipocyte and differentiation for 4 d, respectively; C. Oil red O staining after transfection of si-NC, si-PPP5C-425 to bovine precursor adipocyte and differentiation for 4 d, respectively; D. Nile red staining after transfection of si-NC, si-PPP5C-425 into bovine precursor adipocytes and differentiation for 4 d, respectively; E. TG content was assayed after transfection of si-NC and si-PPP5C-425 into bovine precursor adipocytes and differentiation for 4 d, respectively"
Fig. 7
Effect of overexpression of PPP5C gene on bovine adipocyte differentiation A. The mRNA expression levels of PPARγ, C/EBPα and FABP4 were detected by qRT-PCR in bovine precursor adipocytes transfected with pcDNA3.1, and pcDNA3.1-PPP5C after 4 d of differentiation, respectively; B. BODIPY staining after transfection of pcDNA3.1, pcDNA3.1-PPP5C to bovine precursor adipocyte and differentiation for 4 d, respectively; C. Oil red O staining after transfection of pcDNA3.1, pcDNA3.1-PPP5C to bovine precursor adipocyte and differentiation for 4 d, respectively; D. Nile red staining after transfection of pcDNA3.1, pcDNA3.1-PPP5C to bovine precursor adipocyte and differentiation for 4 d, respectively; E. TG content was assayed after transfection of pcDNA3.1 and pcDNA3.1-PPP5C into bovine precursor adipocytes for differentiation 4 d, respectively"
1 |
ALVAREZ-GUAITA A , PATEL S , LIM K , et al. Phenotypic characterization of Adig null mice suggests roles for adipogenin in the regulation of fat mass accrual and leptin secretion[J]. Cell Rep, 2021, 34 (10): 108810.
doi: 10.1016/j.celrep.2021.108810 |
2 |
GWON M H , YUN J M . Phenethyl isothiocyanate improves lipid metabolism and inflammation via mTOR/PPARγ/AMPK signaling in the adipose tissue of obese mice[J]. J Med Food, 2021, 24 (6): 666- 669.
doi: 10.1089/jmf.2020.4881 |
3 | 刘畅, 郝科兴, 陈岩, 等. 干扰PPARγ基因对绵羊滋养层细胞增殖、凋亡、迁移和脂质积累的影响[J]. 畜牧兽医学报, 2024, 55 (6): 2421- 2430. |
LIU C , HAO K X , CHEN Y , et al. Effects of interference with PPARγ gene on proliferation, apoptosis, migration and lipid accumulation of trophoblast cells in sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (6): 2421- 2430. | |
4 |
XIE J L , HAN M , ZHANG M J , et al. PP5 (PPP5C) is a phosphatase of Dvl2[J]. Sci Rep, 2018, 8 (1): 2715.
doi: 10.1038/s41598-018-21124-3 |
5 |
MORITA K I , SAITOH M , TOBIUME K , et al. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress[J]. EMBO J, 2001, 20 (21): 6028- 6036.
doi: 10.1093/emboj/20.21.6028 |
6 |
SKARRA D V , GOUDREAULT M , CHOI H , et al. Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5[J]. Proteomics, 2011, 11 (8): 1508- 1516.
doi: 10.1002/pmic.201000770 |
7 |
SILVERSTEIN A M , GALIGNIANA M D , CHEN M S , et al. Protein phosphatase 5 is a major component of glucocorticoid receptor ·hsp90 complexes with properties of an FK506-binding immunophilin[J]. J Biol Chem, 1997, 272 (26): 16224- 16230.
doi: 10.1074/jbc.272.26.16224 |
8 |
GRANKVIST N , HONKANEN RE , SJÖHOLM Å , et al. Genetic disruption of protein phosphatase 5 in mice prevents high-fat diet feeding-induced weight gain[J]. FEBS Lett, 2013, 587 (23): 3869- 3874.
doi: 10.1016/j.febslet.2013.10.022 |
9 |
HINDS T D JR , SÁNCHEZ E R . Protein phosphatase 5[J]. Int J Biochem Cell Biol, 2008, 40 (11): 2358- 2362.
doi: 10.1016/j.biocel.2007.08.010 |
10 |
GOLDEN T , SWINGLE M , HONKANEN R E . The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer[J]. Cancer Metastasis Rev, 2008, 27 (2): 169- 178.
doi: 10.1007/s10555-008-9125-z |
11 | LI G Y , LIU J Z , ZHANG L , et al. Knockdown of protein phosphatase 5 (PPP5C) suppresses the growth of leukemic cell line U937[J]. Cell Mol Biol (Noisy-le-grand), 2016, 62 (11): 27- 31. |
12 | 王中波, 刘爽, 贺丽霞, 等. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55 (4): 1565- 1578. |
WANG Z B , LIU S , HE L X , et al. Metabolomics analysis on different muscle tissues of Guyuan cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1565- 1578. | |
13 |
GAO Y H , WANG S Z , MA Y F , et al. Circular RNA regulation of fat deposition and muscle development in cattle[J]. Vet Med Sci, 2022, 8 (5): 2104- 2113.
doi: 10.1002/vms3.857 |
14 | UEZUMI A , ITO T , MORIKAWA D , et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle[J]. J Cell Sci, 2011, 124 (Pt 21): 3654- 3664. |
15 |
ZAMANI N , BROWN C W . Emerging roles for the transforming growth factor-β superfamily in regulating adiposity and energy expenditure[J]. Endocr Rev, 2011, 32 (3): 387- 403.
doi: 10.1210/er.2010-0018 |
16 |
HAUSMAN G J , DODSON M V , AJUWON K , et al. BOARD-INVITED REVIEW: the biology and regulation of preadipocytes and adipocytes in meat animals[J]. J Anim Sci, 2009, 87 (4): 1218- 1246.
doi: 10.2527/jas.2008-1427 |
17 |
XU X L , LAGERCRANTZ J , ZICKERT P , et al. Chromosomal localization and 5' sequence of the human protein serine/threonine phosphatase 5' gene[J]. Biochem Biophys Res Commun, 1996, 218 (2): 514- 517.
doi: 10.1006/bbrc.1996.0092 |
18 |
VON KRIEGSHEIM A , PITT A , GRINDLAY G J , et al. Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5[J]. Nat Cell Biol, 2006, 8 (9): 1011- 1016.
doi: 10.1038/ncb1465 |
19 |
JEONG J Y , JOHNS J , SINCLAIR C , et al. Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5[J]. BMC Cell Biol, 2003, 4, 3.
doi: 10.1186/1471-2121-4-3 |
20 |
GOLDEN T , ARAGON I V , RUTLAND B , et al. Elevated levels of Ser/Thr protein phosphatase 5 (PP5) in human breast cancer[J]. Biochim Biophys Acta, 2008, 1782 (4): 259- 270.
doi: 10.1016/j.bbadis.2008.01.004 |
21 |
JACOB W , ROSENZWEIG D , VÁZQUEZ-MARTIN C , et al. Decreased adipogenesis and adipose tissue in mice with inactivated protein phosphatase 5[J]. Biochem J, 2015, 466 (1): 163- 176.
doi: 10.1042/BJ20140428 |
22 |
SHI Y G . Serine/threonine phosphatases: mechanism through structure[J]. Cell, 2009, 139 (3): 468- 484.
doi: 10.1016/j.cell.2009.10.006 |
23 |
YANG J , ROE S M , CLIFF M J , et al. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5[J]. EMBO J, 2005, 24 (1): 1- 10.
doi: 10.1038/sj.emboj.7600496 |
24 |
CHEN M , LV J M , YE J Q , et al. Disruption of serine/threonine protein phosphatase 5 inhibits tumorigenesis of urinary bladder cancer cells[J]. Int J Oncol, 2017, 51 (1): 39- 48.
doi: 10.3892/ijo.2017.3997 |
25 |
FU R B , SHAO Q , YANG B , et al. MiR-520a-5p/PPP5C regulation pattern is identified as the key to gemcitabine resistance in pancreatic cancer[J]. Front Oncol, 2022, 12, 903484.
doi: 10.3389/fonc.2022.903484 |
26 | THIJS J L , HERATH A , DE BRUIN-WELLER M S , et al. Multiplex platform technology and bioinformatics are essential for development of biomarkers in atopic dermatitis[J]. J Allergy Clin Immunol, 2017, 139 (3): 1065. |
27 | SALTER E A , WIERZBICKI A , HONKANEN R E . Quantum-based modeling of dephosphorylation in the catalytic site of serine/threonine protein phosphatase-5 (PPP5C)[J]. Catalysts, 2020, 10 (6): 674. |
28 |
MATSON J P , COOK J G . Cell cycle proliferation decisions: the impact of single cell analyses[J]. FEBS J, 2017, 284 (3): 362- 375.
doi: 10.1111/febs.13898 |
29 | 宋雅萍, 张久盘, 魏大为, 等. FOXO1基因调控牛前体脂肪细胞增殖和分化的功能研究[J]. 中国农业大学学报, 2024, 29 (4): 226- 238. |
SONG Y P , ZHANG J P , WEI D W , et al. Study on the function of FOXO1 gene in regulating the proliferation and differentiation of bovine preadipocytes[J]. Journal of China Agricultural University, 2024, 29 (4): 226- 238. | |
30 |
CHOE K N , MOLDOVAN G L . Forging ahead through darkness: PCNA, still the principal conductor at the replication fork[J]. Mol Cell, 2017, 65 (3): 380- 392.
doi: 10.1016/j.molcel.2016.12.020 |
31 |
SCHETTINI G P , PERIPOLLI E , ALEXANDRE P A , et al. Transcriptomic profile of Longissimus thoracis associated with fatty acid content in Nellore beef cattle[J]. Anim Genet, 2022, 53 (3): 264- 280.
doi: 10.1111/age.13199 |
32 |
HINDS T D JR , STECHSCHULTE L A , CASH H A , et al. Protein phosphatase 5 mediates lipid metabolism through reciprocal control of glucocorticoid receptor and peroxisome proliferator-activated receptor-γ (PPARγ)[J]. J Biol Chem, 2011, 286 (50): 42911- 42922.
doi: 10.1074/jbc.M111.311662 |
33 | MA C H , CUI Z L , WANG Y C , et al. Bioinformatics analysis reveals TSPAN1 as a candidate biomarker of progression and prognosis in pancreatic cancer[J]. Bosn J Basic Med Sci, 2021, 21 (1): 47- 60. |
34 |
WU M Y , LAI T T , LIAO W T , et al. Clinicopathological and prognostic significance and molecular mechanisms governing uveal melanoma[J]. Ther Adv Med Oncol, 2020, 12, 1758835920917566.
doi: 10.1177/1758835920917566 |
35 | 高玉红, 冯雪, 汪书哲, 等. 黄牛circCAP2在前体脂肪细胞分化过程中的功能研究[J]. 农业生物技术学报, 2023, 31 (7): 1441- 1449. |
GAO Y H , FENG X , WANG S Z , et al. Function of circCAP2 in the differentiation of cattle (Bos taurus) preadipocytes[J]. Journal of Agricultural Biotechnology, 2023, 31 (7): 1441- 1449. | |
36 |
PRENTICE K J , SAKSI J , HOTAMISLIGIL G S . Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses[J]. J Lipid Res, 2019, 60 (4): 734- 740.
doi: 10.1194/jlr.S091793 |
[1] | Yuhang JIA, Liangfu GUO, Runan ZHANG, Ayong ZHAO, Yufang LIU, Mingxing CHU. miR-127 Regulated the Proliferation and Differentiation of Sheep Skeletal Myoblasts and Its Transcription Factor PAX3 Screening [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3864-3875. |
[2] | 古丽米热·阿布都热依木, Xinru ZHANG, Yangsheng WU, Ying CHEN, Liqin WANG, Xinming XU, Juncheng HUANG, Jiapeng LIN. Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3947-3956. |
[3] | Yi WANG, Jianfei GONG, Nuo HENG, Yingfan HU, Rui WANG, Huan WANG, Ni ZHU, Wei HE, Zhihui HU, Haisheng HAO, Huabin ZHU, Shanjiang ZHAO. Melatonin Alleviates Palmitic Acid-induced Damage in Bovine Endometrial Epithelial Cells by Improving Mitochondrial Dynamics [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3978-3987. |
[4] | Shuying DAI, Qing LIU, Aiguo LI, Bo YU, Hongbo CHEN. Research Progress on Culture Medium Additives in Bovine In Vitro Embryo Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3309-3320. |
[5] | Xiaojuan LIANG, Yushuang LI, Zhou FU, Duo TANG, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Pigeon Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3482-3492. |
[6] | Yudian SUN, Ziyue SONG, Hongliang ZHANG, Zhihua QIN, Hu SHAN, Ruimei YANG. Isolation and ldentification of Duckling Short Beak and Dwarfism Syndrome Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3623-3630. |
[7] | Zuhua YU, Mengru GAO, Lei HE, Ying WEI, Jian CHEN, Songbiao CHEN, Ke DING. Effects of mdv1-miR-M4-5p Encoded by MDV on Proliferation and Apoptosis of MDCC-MSB1 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3678-3687. |
[8] | Xiying XU, Yiheng WANG, Qianting OU, Linyuan HONG, Xujing LIU, Xianying LU, Kun JIA. Effects of Silencing PREX1 Expression on Proliferation and Invasiveness of CHMp [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3706-3713. |
[9] | Xiaojuan LIANG, Yushuang LI, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Beijing Black Pig Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2877-2889. |
[10] | Ziyan WANG, Yahui WANG, Tianyi WU, Chen GAO, Zhenwei DU, Fei GE, Xiaobei ZHANG, Wenxuan ZHAO, Lupei ZHANG, Huijiang GAO, Huansheng DONG, Junya LI. INTS11 Promotes the Proliferation of Bovine Myoblasts by Mediating the Transcription of CDK2 and CYCLIND1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2927-2939. |
[11] | Wangqing BAN MA, Xi CHEN, Yi YUE, Yurong SU, Hua YUE, Cheng TANG. Isolation, Identification and Partial Biological Characteristics of a Bovine Respiratory Coronavirus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3094-3104. |
[12] | Jinting LUO, Fafang XU, Lei WANG, Xuan LUO, Yuhong MA, Jianbo ZHANG, Weihua HUANG, Yuejun SHANG, Guofang WU. The Effect of RSP on Cell Proliferation and Apoptosis of Porcine Leydig Cells with Hypoxia [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2441-2450. |
[13] | Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Haisheng HAO, Weihua DU, Huabin ZHU, Kai CUI, Xueming ZHAO. Effects of Heat Stress on Epigenetic Modifications and Developmental Competence of Bovine Oocytes and Their Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2460-2473. |
[14] | Huijie REN, Xun MA, Jing WANG, Caixia LIU, Dongdong ZENG, Lijun KOU, Weidi SHI, Shuangfei LÜ, Ruixuan QIAN, Shengjie GAO. Construction and Partial Biological Characteristics Trial of Lm4b_02325/26 Double Gene Deletion Strain of Listeria monocytogenes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2578-2587. |
[15] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||