Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (6): 2460-2473.doi: 10.11843/j.issn.0366-6964.2024.06.018
• Animal Biotechnology and Reproduction • Previous Articles Next Articles
Xiaoyi FENG1,2(), Peipei ZHANG2, Hang ZHANG2, Haisheng HAO2, Weihua DU2, Huabin ZHU2, Kai CUI1,*(), Xueming ZHAO2,*()
Received:
2023-10-16
Online:
2024-06-23
Published:
2024-06-28
Contact:
Kai CUI, Xueming ZHAO
E-mail:17806257712@163.com;qdndcuikai@163.com;zhaoxueming@caas.cn
CLC Number:
Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Haisheng HAO, Weihua DU, Huabin ZHU, Kai CUI, Xueming ZHAO. Effects of Heat Stress on Epigenetic Modifications and Developmental Competence of Bovine Oocytes and Their Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2460-2473.
Table 1
Primer sequences for RT-qPCR"
基因 Gene | 引物序列(5′→3′) Primers sequence | 产物长度/bp Length | 登录号 GenBank accession No. |
GAPDH | F:GGGTCATCATCTCTGCACC | 177 | NM_001034034 |
R:GGTCATAAGTCCCTCCACG | |||
DNMT1 | F: AGTGGGGGACTGTGTTTCTG | 218 | XM_015471992.2 |
R: TGCTGTGGATGTACGAGAGC | |||
DNMT3A | F: AGCACAACGGAGAAGCCTAA | 245 | NM_001206502.2 |
R: CAGCAGATGGTGCAGTAGGA | |||
DNMT3B | F: GAGAATAAGACGCGGAGACG | 146 | NM_181813.2 |
R: ACATCCGAAGCCATTTGTTC | |||
Histone H2A | F: GCGGTCTTGGAGTACCTGAC | 204 | BF076713.1 |
R: AGTCTTCTTCGGGAGCAACA | |||
IGF-2R | F: GTCGTGCAGATCAGTCCTCA | 152 | NM_174352.2 |
R: TCGTTCTGGAGCTGAAAGGT | |||
SMYD3 | F: GACCATGGAGCCTTACAGGA | 135 | NM_001076406.2 |
R: TCAAAAGCCAGCCTCAGATT | |||
C-MOS | F:TCTACTCCTTCGCCATCACC | 260 | XM_002692654.4 |
R:GAGTCCTCCCAGCTCCTCTT | |||
GDF-9 | F:CTTTGCCTGGCTCTGTTTTC | 116 | NM_174681.2 |
R:GAGTCCTCCCAGCTCCTCTT | |||
POU5F1 | F:GTTTTGAGGCTTTGCAGCTC | 182 | NM_174580.3 |
R:CTCCAGGTTGCCTCTCACTC |
Table 2
Effect of heat stress on the developmental ability of bovine oocytes and embryos"
组别 Group | 卵子数/个 No. of oocytes | 成熟率/% Maturity rate | 卵裂率/% Cleavage rate | 囊胚率/% Blastocyst rate |
对照组 Control group | 396 | 85.10±6.75(337/396)a | 78.64±2.46(265/337)a | 42.64±1.38(113/265)a |
热应激组 Heat stress group | 760 | 59.21±4.29(450/760)b | 57.78±4.58(260/450)b | 22.31±1.67(58/260)b |
Fig. 1
Statistical analysis of histone H1 distribution and results during bovine oocyte and embryo development A. Distribution of control histone H1F0 in developing bovine oocytes and embryos, scale=50 μm; B. Distribution of heat stress group histone H1F0 during bovine oocytes and embryo development, scale=50 μm; C. Statistical comparison of histone H1 results between control and heat stress groups; * indicates significant differences (P < 0.05), the same as below"
Fig. 2
Statistical analysis of histone H2 distribution and results during bovine oocyte and embryo development A. Distribution of control histone H2B in developing bovine oocytes and embryos, scale=50 μm; B. Distribution of heat stress group histone H2B during bovine oocytes and embryo development, scale=50 μm; C. Statistical comparison of histone H2 results between control and heat stress groups"
Fig. 3
Statistical analysis of histone H4 distribution and results during bovine oocyte and embryo development A. Distribution of control histone H4 in developing bovine oocytes and embryos, scale=50 μm; B. Distribution of heat stress group histone H4 during bovine oocytes and embryo development, scale=50 μm; C. Statistical comparison of histone H4 results between control and heat stress groups"
Fig. 4
Statistical analysis of DNA methylation distribution and results during bovine oocyte and embryo development A. Distribution of control DNA methylation in developing bovine oocytes and embryos, scale=50 μm; B. Distribution of heat stress group DNA methylation during bovine oocytes and embryo development, scale=50 μm; C. Statistical comparison of DNA methylation results between control and heat stress groups"
1 |
WANKARA K,RINDHES N,DOIJADN S.Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario[J].Trop Anim Health Prod,2021,53(1):70.
doi: 10.1007/s11250-020-02541-x |
2 |
HUBERE,NOTAROU S,RECCES,et al.Fetal programming in dairy cows: effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions[J].Anim Reprod Sci,2020,216,106348.
doi: 10.1016/j.anireprosci.2020.106348 |
3 |
BECKERC A,COLLIERR J,STONEA E.Invited review: physiological and behavioral effects of heat stress in dairy cows[J].J Dairy Sci,2020,103(8):6751-6770.
doi: 10.3168/jds.2019-17929 |
4 |
NARANJO-GOMEZJ S,URIBE-GARCIAH F,HERRERA-SANCHEZM P,et al.Heat stress on cattle embryo: gene regulation and adaptation[J].Heliyon,2021,7(3):e06570.
doi: 10.1016/j.heliyon.2021.e06570 |
5 |
DE AGUIARL H,HYDEK A,PEDROZAG H,et al.Heat stress impairs in vitro development of preantral follicles of cattle[J].Anim Reprod Sci,2020,213,106277.
doi: 10.1016/j.anireprosci.2020.106277 |
6 |
WANGJ J,LIJ H,WANGF X,et al.Heat stress on calves and heifers: a review[J].J Anim Sci Biotechnol,2020,11,79.
doi: 10.1186/s40104-020-00485-8 |
7 |
SAKATANIM.Effects of heat stress on bovine preimplantation embryos produced in vitro[J].J Reprod Dev,2017,63(4):347-352.
doi: 10.1262/jrd.2017-045 |
8 |
DE BARROSF R O,PAULA-LOPESF F.Cellular and epigenetic changes induced by heat stress in bovine preimplantation embryos[J].Mol Reprod Dev,2018,85(11):810-820.
doi: 10.1002/mrd.23040 |
9 |
MI TKIEWSKAK,KORDOWITZKIP,PAREEKC S.Effects of heat stress on bovine oocytes and early embryonic development-an update[J].Cells,2022,11(24):4073.
doi: 10.3390/cells11244073 |
10 | MAREI W F A, LEROY J L M R. Cellular stress responses in oocytes: molecular changes and clinical implications[M]// TURKSEN K. Cell Biology and Translational Medicine. Cham: Springer, 2022: 171-189. |
11 |
STAMPERNAK,GIANNOULIST,NANASI,et al.Short term temperature elevation during IVM affects embryo yield and alters gene expression pattern in oocytes, cumulus cells and blastocysts in cattle[J].Theriogenology,2020,156,36-45.
doi: 10.1016/j.theriogenology.2020.06.039 |
12 | DOHERTYR,O'FARRELLYC,MEADEK G.Comparative epigenetics: relevance to the regulation of production and health traits in cattle[J].Anim Genet,2014,45 Suppl 1,3-14. |
13 |
WANGM Q,IBEAGHA-AWEMUE M.Impacts of epigenetic processes on the health and productivity of livestock[J].Front Genet,2021,11,613636.
doi: 10.3389/fgene.2020.613636 |
14 |
CHENH H,ZHANGL,DENGT F,et al.Effects of oocyte vitrification on epigenetic status in early bovine embryos[J].Theriogenology,2016,86(3):868-878.
doi: 10.1016/j.theriogenology.2016.03.008 |
15 |
VAN ESCHB C A M,PORBAHAIEM,ABBRINGS,et al.The impact of milk and its components on epigenetic programming of immune function in early life and beyond: implications for allergy and asthma[J].Front Immunol,2020,11,2141.
doi: 10.3389/fimmu.2020.02141 |
16 |
HALUŠKOVÁJ,HOLEČKOVÁB,STANIČOVÁJ.DNA methylation studies in cattle[J].J Appl Genet,2021,62(1):121-136.
doi: 10.1007/s13353-020-00604-1 |
17 |
YANR,CHENGX,GUC,et al.Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development[J].Nat Genet,2023,55(1):130-143.
doi: 10.1038/s41588-022-01258-x |
18 |
ANDREWSS,KRUEGERC,MELLADO-LOPEZM,et al.Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B[J].Nat Commun,2023,14(1):371.
doi: 10.1038/s41467-023-36019-9 |
19 |
BRACKETTB G,OLIPHANTG.Capacitation of rabbit spermatozoa in vitro[J].Biol Reprod,1975,12(2):260-274.
doi: 10.1095/biolreprod12.2.260 |
20 |
DIAZF A,GUTIERREZ-CASTILLOE J,FOSTERB A,et al.Evaluation of seasonal heat stress on transcriptomic profiles and global DNA methylation of bovine oocytes[J].Front Genet,2021,12,699920.
doi: 10.3389/fgene.2021.699920 |
21 | LEEJ,KIMD,SONJ,et al.Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro[J].J Anim Sci Techno,2023,65(2):324-335. |
22 |
PAYTONR R,ROMARR,COYP,et al.Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro[J].Biol Reprod,2004,71(4):1303-1308.
doi: 10.1095/biolreprod.104.029892 |
23 | KHANI,MESALAMA,HEOY S,et al.Heat stress as a barrier to successful reproduction and potential alleviation strategies in cattle[J].Animals (Basel),2023,13(14):2359. |
24 |
ROTHZ.Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function[J].J Dairy Sci,2018,101(4):3642-3654.
doi: 10.3168/jds.2017-13389 |
25 |
ROTHZ,HANSENP J.Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation[J].Biol Reprod,2004,71(6):1898-1906.
doi: 10.1095/biolreprod.104.031690 |
26 |
SMITHZ D,MEISSNERA.DNA methylation: roles in mammalian development[J].Nat Rev Genet,2013,14(3):204-220.
doi: 10.1038/nrg3354 |
27 |
ZHUJ Q,LIUJ H,LIANGX W,et al.Heat stress causes aberrant DNA methylation of H19 and Igf-2r in mouse blastocysts[J].Mol Cells,2008,25(2):211-215.
doi: 10.1016/S1016-8478(23)17572-8 |
28 |
LIS,SHIY,DANGY N,et al.Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure[J].Biol Reprod,2022,107(6):1425-1438.
doi: 10.1093/biolre/ioac167 |
29 |
FUG,GHADAMP,SIROTKINA,et al.Mouse oocytes and early embryos express multiple histone H1 subtypes[J].Biol Reprod,2003,68(5):1569-1576.
doi: 10.1095/biolreprod.102.012336 |
30 |
FUNAYAS,OOGAM,SUZUKIM G,et al.Linker histone H1FOO regulates the chromatin structure in mouse zygotes[J].FEBS Lett,2018,592(14):2414-2424.
doi: 10.1002/1873-3468.13175 |
31 |
JOOH Y,JONESA,YANGC Y,et al.Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46[J].J Biol Chem,2011,286(9):7190-7201.
doi: 10.1074/jbc.M110.158311 |
32 |
RINALDOC,MONCADAA,GRADIA,et al.HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody[J].Mol Cell,2012,47(1):87-98.
doi: 10.1016/j.molcel.2012.04.029 |
33 |
DE LA BARREA E,ANGELOVD,MOLLAA,et al.The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation[J].EMBO J,2001,20(22):6383-6393.
doi: 10.1093/emboj/20.22.6383 |
34 |
KAFERG R,LEHNERTS A,PANTALEONM,et al.Expression of genes coding for histone variants and histone-associated proteins in pluripotent stem cells and mouse preimplantation embryos[J].Gene Expr Patterns,2010,10(6):299-305.
doi: 10.1016/j.gep.2010.06.003 |
35 |
IZUMIY,MATSUOK,YOKOYAA.Secondary structural analyses of histone H2A-H2B proteins extracted from heated cells[J].Chirality,2023,35(3):165-171.
doi: 10.1002/chir.23529 |
36 |
FREEMANL,KURUMIZAKAH,WOLFFEA P.Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos[J].Proc Natl Acad Sci U S A,1996,93(23):12780-12785.
doi: 10.1073/pnas.93.23.12780 |
37 |
GHULEP N,XIER L,COLBYJ L,et al.Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos[J].Dev Biol,2016,419(2):311-320.
doi: 10.1016/j.ydbio.2016.09.003 |
38 |
ENDOT,IMAIA,SHIMAOKAT,et al.Histone exchange activity and its correlation with histone acetylation status in porcine oocytes[J].Reproduction,2011,141(4):397-405.
doi: 10.1530/REP-10-0164 |
39 |
ROZINEKJ,MULLERS,COURTENSJ L.Immunocytochemical localization of histones H2B, H3 and H4 in pronuclei and four-cell stages of porcine embryos.Preliminary results[J].Reprod Nutr Dev,1989,29(5):577-587.
doi: 10.1051/rnd:19890507 |
40 |
WEEG,KOOD B,SONGB S,et al.Inheritable histone H4 acetylation of somatic chromatins in cloned embryos[J].J Biol Chem,2006,281(9):6048-6057.
doi: 10.1074/jbc.M511340200 |
41 |
TESSADORIF,GILTAYJ C,HURSTJ A,et al.Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control[J].Nat Genet,2017,49(11):1642-1646.
doi: 10.1038/ng.3956 |
42 |
SANTOSF,DEANW.Epigenetic reprogramming during early development in mammals[J].Reproduction,2004,127(6):643-651.
doi: 10.1530/rep.1.00221 |
43 |
LIANGY,FUX W,LIJ J,et al.DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification[J].Zygote,2014,22(2):138-145.
doi: 10.1017/S0967199412000512 |
44 |
WANGL J,LIUL X,WANGY S,et al.Aberrant epigenetic reprogramming in the first cell cycle of bovine somatic cell nuclear transfer embryos[J].Cell Reprogram,2021,23(2):99-107.
doi: 10.1089/cell.2020.0079 |
45 |
ZHUL K,MARJANIS L,JIANGZ L.The epigenetics of gametes and early embryos and potential long-range consequences in livestock species—filling in the picture with epigenomic analyses[J].Front Genet,2021,12,557934.
doi: 10.3389/fgene.2021.557934 |
46 |
DOBBSK B,RODRIGUEZM,SUDANOM J,et al.Dynamics of DNA methylation during early development of the preimplantation bovine embryo[J].PLoS One,2013,8(6):e66230.
doi: 10.1371/journal.pone.0066230 |
47 |
NABENISHIH,TAKAGIS,KAMATAH,et al.The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A[J].Mol Reprod Dev,2012,79(1):31-40.
doi: 10.1002/mrd.21401 |
48 | GENDELMANM,ROTHZ.Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J].Biol Reprod,2012,87(5):118. |
49 |
VAN BLERKOMJ.Mitochondrial function in the human oocyte and embryo and their role in developmental competence[J].Mitochondrion,2011,11(5):797-813.
doi: 10.1016/j.mito.2010.09.012 |
50 |
SOTOP,SMITHL C.BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes[J].Mol Reprod Dev,2009,76(7):637-646.
doi: 10.1002/mrd.20986 |
51 |
ZHAOX M,DUW H,WANGD,et al.Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes[J].Fertil Steril,2011,95(8):2786-2788.
doi: 10.1016/j.fertnstert.2011.04.089 |
52 |
YAACOBI-ARTZIS,SHIMONIC,KALOD,et al.Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J].Theriogenology,2020,158,477-489.
doi: 10.1016/j.theriogenology.2020.09.039 |
53 |
ROTHZ.Physiology and endocrinology symposium: cellular and molecular mechanisms of heat stress related to bovine ovarian function[J].J Anim Sci,2015,93(5):2034-2044.
doi: 10.2527/jas.2014-8625 |
54 |
ZHANGH,GONGW B,WUS,et al.Hsp70 in redox homeostasis[J].Cells,2022,11(5):829.
doi: 10.3390/cells11050829 |
55 |
DE CASTRO CAVALLARIF,LEALC L V,ZVIR,et al.Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J].Zygote,2019,27(3):180-186.
doi: 10.1017/S0967199419000236 |
56 | HIENDLEDERS,ZAKHARTCHENKOV,WOLFE.Mitochondria and the success of somatic cell nuclear transfer cloning: from nuclear-mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination[J].Reprod Fertil Dev,2005,17(1/2):69-83. |
57 |
PAVANIK C,BARONE,CORREIAP,et al.Gene expression, oocyte nuclear maturation and developmental competence of bovine oocytes and embryos produced after in vivo and in vitro heat shock[J].Zygote,2016,24(5):748-759.
doi: 10.1017/S0967199416000071 |
58 |
GOLDINGM C,WESTHUSINM E.Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues[J].Gene Expr Patterns,2003,3(5):551-558.
doi: 10.1016/S1567-133X(03)00121-2 |
59 |
URREGOR,BERNAL-ULLOAS M,CHAVARRIAN A,et al.Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro[J].Zygote,2017,25(2):131-140.
doi: 10.1017/S096719941600040X |
60 |
BETTEGOWDAA,PATELO V,IRELANDJ J,et al.Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, β-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, β-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro[J].Mol Reprod Dev,2006,73(3):267-278.
doi: 10.1002/mrd.20333 |
61 | LONGJ E,CAIX.Igf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle[J].Gene,2007,388(1/2):125-134. |
62 |
BAIH D,LIY,GAOH X,et al.Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development[J].Cytotechnology,2016,68(4):849-859.
doi: 10.1007/s10616-014-9838-5 |
63 |
GILCHRISTR B,LANEM,THOMPSONJ G.Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality[J].Hum Reprod Update,2008,14(2):159-177.
doi: 10.1093/humupd/dmm040 |
[1] | Hang ZHANG, Peipei ZHANG, Baigao YANG, Xiaoyi FENG, Yifan NIU, Zhou YU, Jianhua CAO, Pengcheng WAN, Xueming ZHAO. Combination of IGF1, CoQ10 and MT Alleviated the Effects of Heat Stress on Bovine IVF Blastocysts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2474-2485. |
[2] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
[3] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[4] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[5] | HUANG Jin, LI Siyuan, MAO Li, CAI Xuhang, XIE Lingling, WANG Fu, ZHOU Hua, LI Jizong, LI Bin. Eukaryotic Expression of Bovine Coronavirus S1 Protein and Establishment and Application of Indirect ELISA [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2050-2060. |
[6] | GUO Xuelian, LI Yongqin, LI Ruiqian, LI Hao, JIN Shuangyuan, WANG Xueyan, DU Jiawei, XU Lihua. Biological Functions of Bovine Respiratory Syncytial Virus G and F Proteins [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1478-1487. |
[7] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[8] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
[9] | LI Yujun, HE Honghong, YANG Lixue, YANG Xiaogeng, LI Jian, ZHANG Huizhu. Advances in Regulation of Mammalian Embryonic Development by Mitochondrial Autophagy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 905-912. |
[10] | LIU Qiang, NIU Xiaoxia, FANG Min, LIU Yanling, GAO Hui, CHEN Jixiang, JIAHUA Cairang, ZHANG Sinong, LI Yong. Research Progress of Bovine Coronavirus Spike Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 944-956. |
[11] | HU Qiaoyan, ZHAI Xiangqin, LI Yidan, HAN Jiale, LEI Chuzhao, DANG Ruihua. Effects of bta-miR-101 on Proliferation, Apoptosis and Secretion of Bovine Testicular Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1040-1051. |
[12] | KANG Fangyuan, LIU Zhentao, WU Kuixian, NI Han, ZHONG Kai, LI Heping, YANG Guoyu, HAN Liqiang. Regulation of Lipophagy on the Size of Lipid Droplets in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1095-1101. |
[13] | YI Pengfei, SUN Lei, MA Yanan, MA Xuelian, LI Na, SUN Yawei, ZHONG Qi, YAO Gang. Comparative on Changes in Nasal Microbiota between Healthy Angus Calves and IBRV Infected Calves [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1147-1158. |
[14] | HUO Yuannan, QIU Meijia, ZHANG Jiaojiao, YANG Weirong, WANG Xianzhong. Arginine and Its Metabolites Attenuate Heat Stress-induced Apoptosis of Immature Boar Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 587-597. |
[15] | YU Qisheng, ZHU Qing, ZHOU Qun, SONG Xin, ZHANG Jiaqi, CHEN Taoyun, XU Lin, ZHANG Chaohui, ZHANG Bin. Expression of BCoV Spike Protein by Baculovirus Expression System and Its Immunogenicity in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 640-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||