Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (8): 3482-3492.doi: 10.11843/j.issn.0366-6964.2024.08.021
• Animal Genetics and Breeding • Previous Articles Next Articles
Xiaojuan LIANG(), Yushuang LI, Zhou FU, Duo TANG, Yingying LI, Shouwei WANG*()
Received:
2024-01-29
Online:
2024-08-23
Published:
2024-08-28
Contact:
Shouwei WANG
E-mail:xyskylxj8907@163.com;cmrcwsw@126.com
CLC Number:
Xiaojuan LIANG, Yushuang LI, Zhou FU, Duo TANG, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Pigeon Preadipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3482-3492.
Table 1
Primer sequences used for real-time quantitative PCR"
基因Gene | 上游引物序列(5′→3′) Forward primer sequence | 下游引物序列(5′→3′) Reverse primer sequence |
PPARγ | CAAAGCTCACGAGGACCCTT | GCGTTATGCGACATCCCAAC |
SREBF1 | CCGTCAAGACAGATGCTGGT | TAGCGTTTCTCGATGGCGTT |
ACACA | TGGGGTCTGAGGAGATGGAA | CTTCCCCCGGCTCTGATAAC |
SCD | GGCTGGCGCTTCAACTTAAC | AAGCAGGAACTCAGCCACTC |
LPL | AGAAGGGTCTTTGCCTGAGC | GGCATCTGAGCACGAGTCTT |
AFABP | CCAGGAAAATGGCTGGTGTG | TCTTTCCCATCCCACTTCTGC |
DGAT2 | TGAGTCCCTGAATTGCACCC | TCCCCGAAGGAGTAGACAGG |
PLIN2 | CTGCCTCACACTGGTCTCAA | GGGTAAAAGGGACCTACCAGC |
FASN | GAAGCTCCAAGCCAGTTTGC | CAGAGGCTTCACCACACCAT |
18S | GTAACCCGTTGAACCCCATT | CCATCCAATCGGTAGTAGCG |
Fig. 6
Expression of differentiation-related genes during adipogenic differentiation of pigeon adipocytes A. Detection of relative expression of differentiation related genes at mRNA level; B. Detection of relative expression of differentiation related genes at protein level; C. Quantitative data from 5 times Western blot. The different lowercase letters indicate the significant difference (P<0.05), the same lowercase letters indicate no significant difference (P>0.05)"
1 |
ZHAO X Y , HU H M , WANG C , et al. A comparison of methods for effective differentiation of the frozen-thawed 3T3-L1 cells[J]. Anal Biochem, 2019, 568, 57- 64.
doi: 10.1016/j.ab.2018.12.020 |
2 |
BRYANT C J . Culture, meat, and cultured meat[J]. J Anim Sci, 2020, 98 (8): skaa172.
doi: 10.1093/jas/skaa172 |
3 |
CHEN L , GUTTIERES D , KOENIGSBERG A , et al. Large-scale cultured meat production: trends, challenges and promising biomanufacturing technologies[J]. Biomaterials, 2022, 280, 121274.
doi: 10.1016/j.biomaterials.2021.121274 |
4 |
DUTTA S D , GANGULY K , JEONG M S , et al. Bioengineered lab-grown meat-like constructs through 3D bioprinting of antioxidative protein hydrolysates[J]. ACS Appl Mater Interfaces, 2022, 14 (30): 34513- 34526.
doi: 10.1021/acsami.2c10620 |
5 |
SINGH A , KUMAR V , SINGH S K , et al. Recent advances in bioengineered scaffold for in vitro meat production[J]. Cell Tissue Res, 2023, 391 (2): 235- 247.
doi: 10.1007/s00441-022-03718-6 |
6 |
SEAH J S H , SINGH S , TAN L P , et al. Scaffolds for the manufacture of cultured meat[J]. Crit Rev Biotechnol, 2022, 42 (2): 311- 323.
doi: 10.1080/07388551.2021.1931803 |
7 |
SUGII S , WONG C Y Q , LWIN A K O , et al. Alternative fat: redefining adipocytes for biomanufacturing cultivated meat[J]. Trends Biotechnol, 2023, 41 (5): 686- 700.
doi: 10.1016/j.tibtech.2022.08.005 |
8 |
JARA T C , PARK K , VAHMANI P , et al. Stem cell-based strategies and challenges for production of cultivated meat[J]. Nat Food, 2023, 4 (10): 841- 853.
doi: 10.1038/s43016-023-00857-z |
9 |
SHAIKH S , LEE E , AHMAD K , et al. Cell types used for cultured meat production and the importance of myokines[J]. Foods, 2021, 10 (10): 2318.
doi: 10.3390/foods10102318 |
10 |
LI C H , YANG I H , KE C J , et al. The production of fat-containing cultured meat by stacking aligned muscle layers and adipose Layers formed from gelatin-soymilk scaffold[J]. Front Bioeng Biotechnol, 2022, 10, 875069.
doi: 10.3389/fbioe.2022.875069 |
11 |
BOMKAMP C , MUSGROVE L , MARQUES D M C , et al. Differentiation and maturation of muscle and fat cells in cultivated seafood: lessons from developmental biology[J]. Mar Biotechnol (NY), 2023, 25 (1): 1- 29.
doi: 10.1007/s10126-022-10174-4 |
12 | MEHTA F , THEUNISSEN R , POST M J . Adipogenesis from bovine precursors[J]. Methods Mol Biol, 2019, 1889, 111- 125. |
13 |
CUI T T , HUANG J X , SUN Y N , et al. KLF2 inhibits chicken preadipocyte differentiation at least in part via directly repressing PPARγ transcript variant 1 expression[J]. Front Cell Dev Biol, 2021, 9, 627102.
doi: 10.3389/fcell.2021.627102 |
14 |
陈兰, 张涛, 丁浩, 等. Kruppel样因子15对和盈黑鸡前体脂肪细胞增殖分化的影响[J]. 畜牧兽医学报, 2022, 53 (7): 2118- 2129.
doi: 10.11843/j.issn.0366-6964.2022.07.009 |
CHEN L , ZHANG T , DING H , et al. Effects of Krüppel-like factor 15 gene on proliferation and differentiation of preadipocytes of heying black chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2118- 2129.
doi: 10.11843/j.issn.0366-6964.2022.07.009 |
|
15 | 王东雪, 贺月华, 王春秀, 等. TIMP3对鸡前脂肪细胞增殖与分化的影响[J]. 中国畜牧杂志, 2024, 60 (4): 154- 160. |
WANG D X , HE Y H , WANG C X , et al. Effects of TIMP3 on proliferation and differentiation of chicken preadipocytes[J]. Chinese Journal of Animal Science, 2024, 60 (4): 154- 160. | |
16 |
WANG Z , YIN Z T , ZHANG F , et al. Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks[J]. BMC Genomics, 2019, 20 (1): 688.
doi: 10.1186/s12864-019-6055-9 |
17 | 尚圆圆, 张小辉, 户运奇, 等. 肌肉组织液对番鸭脂肪细胞增殖分化和脂质沉积的影响[J]. 中国家禽, 2023, 45 (12): 16- 20. |
SHANG Y Y , ZHANG X H , HU Y Q , et al. Effect of muscle tissue fluid on proliferation, differentiation and lipid deposition of muscovy duck adipocytes[J]. China Poultry, 2023, 45 (12): 16- 20. | |
18 |
HUO W R , WENG K Q , GU T T , et al. Identification and characterization of the adipogenesis in intramuscular and subcutaneous adipocytes of the goose (Anser cygnoides)[J]. Anim Biotechnol, 2022, 33 (6): 1181- 1189.
doi: 10.1080/10495398.2021.1880420 |
19 |
史明月, 张雪莲, 杨晓奋, 等. NR1H3基因调控猪前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2022, 53 (7): 2094- 2103.
doi: 10.11843/j.issn.0366-6964.2022.07.007 |
SHI M Y , ZHANG X L , YANG X F , et al. Study on NR1H3 gene regulating differentiation of porcine preadipocyte[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2094- 2103.
doi: 10.11843/j.issn.0366-6964.2022.07.007 |
|
20 |
王森, 师俊华, 王之盛, 等. 牦牛不同部位前体脂肪细胞分离鉴定及分化关键基因表达研究[J]. 畜牧兽医学报, 2022, 53 (3): 755- 765.
doi: 10.11843/j.issn.0366-6964.2022.03.009 |
WANG S , SHI J H , WANG Z S , et al. Isolation and identification of preadipocytes from different parts of yak and expression of key genes for differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (3): 755- 765.
doi: 10.11843/j.issn.0366-6964.2022.03.009 |
|
21 |
张寒月, 赵丹, 梁煜, 等. miR-150靶向AOC3调控绵羊前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2023, 54 (8): 3262- 3274.
doi: 10.11843/j.issn.0366-6964.2023.08.013 |
ZHANG H Y , ZHAO D , LIANG Y , et al. miR-150 Regulates ovine preadipocyte differentiation by targeting AOC3[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3262- 3274.
doi: 10.11843/j.issn.0366-6964.2023.08.013 |
|
22 | QIU B , SIMON M C . BODIPY 493/503 staining of neutral lipid droplets for microscopy and quantification by flow cytometry[J]. Bio Protoc, 2016, 6 (17): e1912. |
23 |
YAP W S , CHOUDHURY D , SUNTORNNOND R . Towards biomanufacturing of cultured meat[J]. Trends Biotechnol, 2023, 41 (3): 292- 294.
doi: 10.1016/j.tibtech.2023.01.014 |
24 |
LIU P P , SONG W J , BASSEY A P , et al. Preparation and quality evaluation of cultured fat[J]. J Agric Food Chem, 2023, 71 (9): 4113- 4122.
doi: 10.1021/acs.jafc.2c08004 |
25 |
KIM D H , LEE J , SUH Y , et al. Adipogenic and myogenic potentials of chicken embryonic fibroblasts in vitro: combination of fatty acids and insulin induces adipogenesis[J]. Lipids, 2020, 55 (2): 163- 171.
doi: 10.1002/lipd.12220 |
26 |
KIM D H , LEE J , SUH Y , et al. Research note: all-trans retinoic acids induce adipogenic differentiation of chicken embryonic fibroblasts and preadipocytes[J]. Poult Sci, 2020, 99 (12): 7142- 7146.
doi: 10.1016/j.psj.2020.09.006 |
27 | LI G X , CHEN Y , JIN W J , et al. Effects of miR-125b-5p on preadipocyte proliferation and differentiation in chicken[J]. Mol Biol Rep, 2021, 48 (1): 491- 502. |
28 | SUN G R , ZHANG M , SUN J W , et al. Krüppel-like factor KLF9 inhibits chicken intramuscular preadipocyte differentiation[J]. Br Poult Sci, 2019, 60 (6): 790- 797. |
29 | WANG L D , HU X D , WANG S S , et al. MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation[J]. Anim Biosci, 2022, 35 (9): 1327- 1339. |
30 | PAN Z Y , LI X W , WU D S , et al. The duck RXRA gene promotes adipogenesis and correlates with feed efficiency[J]. Animals (Basel), 2023, 13 (4): 680. |
31 | LEE J , KIM D H , SUH Y , et al. Research note: potential usage of DF-1 cell line as a new cell model for avian adipogenesis[J]. Poult Sci, 2021, 100 (5): 101057. |
32 | SUN Y H , ZHAI G Y , LI R , et al. RXRα positively regulates expression of the chicken PLIN1 gene in a PPARγ-independent manner and promotes adipogenesis[J]. Front Cell Dev Biol, 2020, 8, 349. |
33 | SUN Y N , XU H , LI J W , et al. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4[J]. Biochim Biophys Acta Gene Regul Mech, 2023, 1866 (1): 194899. |
34 | ZHANG X Y , CHENG B H , MA Y Y , et al. Genome-wide survey and functional analysis reveal TCF21 promotes chicken preadipocyte differentiation by directly upregulating HTR2A[J]. Biochem Biophys Res Commun, 2022, 587, 131- 138. |
35 | WANG W , ZHANG T M , WU C Y , et al. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR[J]. PLoS One, 2017, 12 (5): e0177348. |
36 | LI X Q , SUN D D , WANG Z , et al. Transcriptional regulatory mechanism of NR2F2 and ZNF423 in avian preadipocyte differentiation[J]. Gene, 2023, 897, 148106. |
37 | ZHANG J , CAI B L , MA M T , et al. ALDH1A1 inhibits chicken preadipocytes' proliferation and differentiation via the PPARγ pathway in vitro and in vivo[J]. Int J Mol Sci, 2020, 21 (9): 3150. |
38 | ZHANG M , MA X F , ZHAI Y H , et al. Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis[J]. J Agric Food Chem, 2020, 68 (11): 3678- 3688. |
39 | ZHANG M , LI F , MA X F , et al. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro[J]. BMC Genomics, 2019, 20 (1): 743. |
40 | WANG L D , LIANG W S , WANG S S , et al. Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J]. PLoS One, 2020, 15 (7): e0236069. |
41 | SHIPP S L , CLINE M A , GILBERT E R . Promotion of adipogenesis by neuropeptide Y during the later stages of chicken preadipocyte differentiation[J]. Physiol Rep, 2016, 4 (21): e13006. |
42 | HE J , TIAN Y , LI J J , et al. Expression pattern of adipocyte fatty acid-binding protein gene in different tissues and its regulation of genes related to adipocyte differentiation in duck[J]. Poult Sci, 2012, 91 (9): 2270- 2274. |
43 | SHANG Z C , GUO L , WANG N , et al. Oleate promotes differentiation of chicken primary preadipocytes in vitro[J]. Biosci Rep, 2014, 34 (1): e00093. |
44 | KIM D H , LEE J , SUH Y , et al. Research note: adipogenic differentiation of embryonic fibroblasts of chicken, turkey, duck, and quail in vitro by medium containing chicken serum alone[J]. Poult Sci, 2021, 100 (8): 101277. |
45 | MATSUBARA Y , ENDO T , KANO K . Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro[J]. Comp Biochem Physiol A Mol Integr Physiol, 2008, 151 (4): 511- 518. |
[1] | Jing CHEN, Xuebei WU, Dongzhi MIAO, Chi ZHANG, Zhenyu GUO, Ying WANG. Comparative Analysis of Transcriptome of Pigeon Follicles at Early Stage of Laying Interval Reveals Genes Related to Follicular Development [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3503-3515. |
[2] | Xiaojuan LIANG, Yushuang LI, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Beijing Black Pig Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2877-2889. |
[3] | WEI Miaoyi, WU Shihai, YANG Fulin, YU Chenyun, SUN Zhigang, LIU Xinyuan, XU Yuanyuan, LIANG Bingbing, LI Fuhuang, SUN Hong, LIU Xiaoye, DONG Hong. Clinical Efficacy of Herbal Gentian Combat Trichomonas pigeon [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 785-796. |
[4] | ZHANG Jinpeng, CHEN Cuiteng, LIN Lin, FU Huanru, LI Zhaolong, JIANG Bin, HUANG Yu, WAN Chunhe. Establishment of a Real-time Fluorescent RT-PCR Assay for Detection of Pigeon Megrivirus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 860-866. |
[5] | LIU Linli, PENG Xuelan, LI Bo, CHENG Lefan, CIREN Lamu, ZHANG Enping. Effect of Overexpression of UCP3 Gene on the Differentiation of Sahu Sheep Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3275-3285. |
[6] | WANG Mingli, WANG Meng, LI Yansen, XU Shanjin, HAN Guofeng, LI Chunmei. Effect of Different Crude Protein Levels of Artificial Crop Milk on Growth Performance,Serum Antioxidant Level and Intestinal Development of Squabs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1545-1554. |
[7] | TAO Jie, LI Benqiang, CHENG Jinghua, SHI Ying, LIU Peihong, LIU Huili. Differential Analysis and the Antibiotic Resistance Genes Prediction of Gut Microbiota in Pigeon [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5293-5300. |
[8] | YANG Menglin, ZHENG Shiqi, PENG Kai, WANG Wei, HUANG Yanhua, PENG Jie. Isolation and Identification of Pigeon-derived Salmonella Typhimurium and Pathogenic Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4880-4888. |
[9] | SHI Mingyue, ZHANG Xuelian, YANG Xiaofen, NIU Jin, XING Jiandong, LU Chang, GAO Pengfei, GUO Xiaohong, LI Bugao, CAO Guoqing. Study on NR1H3 Gene Regulating Differentiation of Porcine Preadipocyte [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2094-2103. |
[10] | CHEN Lan, ZHANG Tao, DING Hao, XIE Kaizhou, ZHANG Genxi, WANG Jinyu. Effects of Kruppel-like Factor 15 Gene on Proliferation and Differentiation of Preadipocytes of Heying Black Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2118-2129. |
[11] | MENG Shan, YANG Yang, LI Ruixiao, JI Mengting, ZHANG Na, LU Chang, CAI Chunbo, GAO Pengfei, GUO Xiaohong, CAO Guoqing, LI Bugao. Screening and Functional Study of lncRNA-6617 Regulating Porcine Intramuscular Preadipocytes Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1712-1722. |
[12] | LIU Kehan, WANG Yong, LI Yanyan, WANG Chongyang, ZHU Jiangjiang, XIONG Yan, LI An, LIN Yaqiu. Effects of SRSF10 on the Differentiation of Intramuscular Preadipocytes in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1768-1778. |
[13] | WANG Sen, SHI Junhua, WANG Zhisheng, HU Rui, WANG Junmei, XUE Bai, PENG Quanhun. Isolation and Identification of Preadipocytes from Different Parts of Yak and Expression of Key Genes for Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 755-765. |
[14] | WANG Fei, ZHANG He, CAI Yuhan, HUANG Zhongzuo, YAN Peijie, WANG Lige, SUN Hong, LI Fuhuang, HE Cheng. The Therapeutic Effect of Yolk Antibody on the Infection of Trichomonas gallinae and Candida albicans [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 658-662. |
[15] | YANG Changheng, LI Qi, HUANG Wei, LIN Yaqiu, WANG Yong, XIANG Hua, ZHU Jiangjiang. Cloning of Goat DGAT1 Gene and Its Regulation on Lipid Deposition in Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 76-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||