Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (8): 3472-3481.doi: 10.11843/j.issn.0366-6964.2024.08.020
• Animal Genetics and Breeding • Previous Articles Next Articles
Xinyu CAO(), Jiawei CAI, Zhiyuan BAO, Shuyu YAO, Yunpeng LI, Yang CHEN, Xinsheng WU, Bohao ZHAO*()
Received:
2024-01-29
Online:
2024-08-23
Published:
2024-08-28
Contact:
Bohao ZHAO
E-mail:3263694549@qq.com;bhzhao@yzu.edu.cn
CLC Number:
Xinyu CAO, Jiawei CAI, Zhiyuan BAO, Shuyu YAO, Yunpeng LI, Yang CHEN, Xinsheng WU, Bohao ZHAO. The Function Analysis of ATG14 Regulates the Autophagy Process in Rabbit Hair Follicle Dermal Papilla Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3472-3481.
Table 1
Primers used for construction of the vector and sequences of siRNA"
引物名称 Primer | 引物序列(5′→3′) Sequence |
pcDNA3.1-ATG14 | F:tttaaacttaagctt$\underline{ggtacc}$ATGGCGTCTCCCAGTGGG |
R:gccgccactgtgctg$\underline{gatatc}$CTAGCGGTGGCCAGTGTAAGC | |
siRNA-ATG14 | F:GCUGGUCAACAUUCUGUCUTT |
R:AGACAGAAUGUUGACCAGCTT | |
siRNA-NC | F:UUCUCCGAACGUGUCACGUTT |
R:ACGUGACACGUUCGGAGAATT |
Table 2
The information of primers used for qRT-PCR"
引物名称 Primer | 引物序列(5′→3′) Sequence | 产物长度/bp Product length | 退火温度/℃ Tm |
CCND1 | F:GAACGCTACCTTCCCCAGTGCTC | 103 | 57.2 |
R:CCTCACAGACCTCCAGCATCCAG | |||
FGF2 | F:GTGTGTGCAAACCGTTACCTT | 159 | 50.9 |
R:TCGTTTCAGTGCCACATACCAG | |||
LEF1 | F:CATCTCGGGTGGATTCAGG | 121 | 53.2 |
R:ATGAGGGATGCCAGTTGTG | |||
BCL2 | F:ACATCGCCCTGTGGATGACTG | 183 | 57.6 |
R:CGAGGGTGATGCAAGCTCCTAT | |||
WNT2 | F:AGCCATCCAGGTCGTCATGAACCAG | 164 | 56.3 |
R:TGCACACACGACCTGCTGTACCC | |||
SFRP2 | F:CCAGCCCGACTTCTCCTACAAGC | 135 | 57.5 |
R:TCCAGCACCTCTTTCATGGTCT | |||
TGFβ-1 | F:CAGGTCCTTGCGGAAGTCAA | 126 | 60.0 |
R:CTGGAACGGGCTCAACATCTA | |||
GAPDH | F:CACCAGGGCTGCTTTTAACTCT | 145 | 53.9 |
R:CTTCCCGTTCTCAGCCTTGACC |
Fig. 1
Bioinformatics analysis of ATG14 protein A. Signal peptide prediction of ATG14;B. Transmembrane domain prediction of ATG14;C. Secondary structure prediction of ATG14 protein; D. Tertiary structure prediction of ATG14 protein; E. Interaction network of ATG14 protein; F. Phylogenetic tree of ATG14 in homology species"
Fig. 2
Effect of ATG14 on the expression of autophagy related proteins in DPCs A. Overexpression of ATG14 regulates the gene expression level of ATG14 in DPCs; B. Knockdown of ATG14 regulates the gene expression level of ATG14 in DPCs; C. Overexpression and knockdown of ATG14 regulates the protein expression level of autophagy related proteins in DPCs; D. The fluorescence observation of ATG14 co-transfected with pEGFP-LC3B in DPCs. ** indicates the significant difference (P<0.01), the same as below"
Fig. 3
ATG14 regulates hair follicle growth and development related genes experssion in DPCs A. Overexpression of ATG14 regulates the expression level of hair follicle growth and development related genes in DPCs; B. Knockdown of ATG14 regulates the expression level of hair follicle growth and development related genes in DPCs; C. Overexpression and knockdown of ATG14 regulates the protein expression level of hair follicle growth and development related genes in DPCs. * indicates the significant difference (P<0.05), the same as below"
1 |
STENN K S , PAUS R . Controls of hair follicle cycling[J]. Physiol Rev, 2001, 81 (1): 449- 494.
doi: 10.1152/physrev.2001.81.1.449 |
2 |
SCHNEIDER M R , SCHMIDT-ULLRICH R , PAUS R . The hair follicle as a dynamic miniorgan[J]. Curr Biol, 2009, 19 (3): R132- R142.
doi: 10.1016/j.cub.2008.12.005 |
3 |
JI S F , ZHU Z Y , SUN X Y , et al. Functional hair follicle regeneration: an updated review[J]. Signal Transduct Target Ther, 2021, 6 (1): 66.
doi: 10.1038/s41392-020-00441-y |
4 |
李玉娟, 张原铭, 张北育, 等. 饲粮赖氨酸水平对安哥拉兔产毛性能及毛囊发育的影响[J]. 畜牧兽医学报, 2023, 54 (5): 2013- 2019.
doi: 10.11843/j.issn.0366-6964.2023.05.022 |
LI Y J , ZHANG Y M , ZHANG B Y , et al. Effects of dietary lysine supplementation on hair production performance and hair follicle development of angora rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 2013- 2019.
doi: 10.11843/j.issn.0366-6964.2023.05.022 |
|
5 |
CAO W Y , LI J H , YANG K P , et al. An overview of autophagy: Mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108 (3): 304- 322.
doi: 10.1016/j.bulcan.2020.11.004 |
6 |
YAMAMOTO H , ZHANG S D , MIZUSHIMA N . Autophagy genes in biology and disease[J]. Nat Rev Genet, 2023, 24 (6): 382- 400.
doi: 10.1038/s41576-022-00562-w |
7 |
VARGAS J N S , HAMASAKI M , KAWABATA T , et al. The mechanisms and roles of selective autophagy in mammals[J]. Nat Rev Mol Cell Biol, 2023, 24 (3): 167- 185.
doi: 10.1038/s41580-022-00542-2 |
8 |
李钰浚, 何翃闳, 杨丽雪, 等. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55 (3): 905- 912.
doi: 10.11843/j.issn.0366-6964.2024.03.005 |
LI Y J , HE H H , YANG L X , et al. Advances in regulation of mammalian embryonic development by mitochondrial autophagy[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 905- 912.
doi: 10.11843/j.issn.0366-6964.2024.03.005 |
|
9 |
PARODI C , HARDMAN J A , ALLAVENA G , et al. Autophagy is essential for maintaining the growth of a human (mini-)organ: evidence from scalp hair follicle organ culture[J]. PLoS Biol, 2018, 16 (3): e2002864.
doi: 10.1371/journal.pbio.2002864 |
10 |
CHAI M , JIANG M S , VERGNES L , et al. Stimulation of hair growth by small molecules that activate autophagy[J]. Cell Rep, 2019, 27 (12): 3413- 3421.
doi: 10.1016/j.celrep.2019.05.070 |
11 |
CHOI Y K , KANG J I , HYUN J W , et al. Myristoleic acid promotes anagen signaling by autophagy through activating Wnt/β-catenin and ERK pathways in dermal papilla cells[J]. Biomol Ther, 2021, 29 (2): 211- 219.
doi: 10.4062/biomolther.2020.169 |
12 | OBARA K , OHSUMI Y . Atg14:a key player in orchestrating autophagy[J]. Int J Cell Biol, 2011, 2011, 713435. |
13 |
DIAO J J , LIU R , RONG Y G , et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes[J]. Nature, 2015, 520 (7548): 563- 566.
doi: 10.1038/nature14147 |
14 |
ZHAO Y T , ZOU Z J , SUN D X , et al. GLIPR2 is a negative regulator of autophagy and the BECN1-ATG14-containing phosphatidylinositol 3-kinase complex[J]. Autophagy, 2021, 17 (10): 2891- 2904.
doi: 10.1080/15548627.2020.1847798 |
15 | LI J L , ZHAO B H , ZHANG X Y , et al. Establishment and functional characterization of immortalized rabbit dermal papilla cell lines[J]. Anim Biotechnol, 2023, 34 (8): 4050- 4059. |
16 | GASTEIGER E , HOOGLAND C , GATTIKER A , et al. Protein identification and analysis tools on the ExPASy server[M]. // WALKER J M.The Proteomics Protocols Handbook.Humana Totowa: Springer, 2005: 571- 607. |
17 |
PETERSEN T N , BRUNAK S , VON HEIJNE G , et al. SignalP 4.0:discriminating signal peptides from transmembrane regions[[J]. Nat Methods, 2011, 8 (10): 785- 786.
doi: 10.1038/nmeth.1701 |
18 |
MÖLLER S , CRONING M D R , APWEILER R . Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics, 2001, 17 (7): 646- 653.
doi: 10.1093/bioinformatics/17.7.646 |
19 |
BLOM N , GAMMELTOFT S , BRUNAK S . Sequence and structure-based prediction of eukaryotic protein phosphorylation sites[J]. J Mol Biol, 1999, 294 (5): 1351- 1362.
doi: 10.1006/jmbi.1999.3310 |
20 |
STEENTOFT C , VAKHRUSHEV S Y , JOSHI H J , et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology[J]. EMBO J, 2013, 32 (10): 1478- 1488.
doi: 10.1038/emboj.2013.79 |
21 | GUPTA R , BRUNAK S . Prediction of glycosylation across the human proteome and the correlation to protein function[J]. Pac Symp Biocomput, 2002, 7 (3): 310- 322. |
22 |
NAKAI K , HORTON P . PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization[J]. Trends Biochem Sci, 1999, 24 (1): 34- 35.
doi: 10.1016/S0968-0004(98)01336-X |
23 |
KUMAR S , STECHER G , LI M , et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35 (6): 1547- 1549.
doi: 10.1093/molbev/msy096 |
24 |
DELÉAGE G . ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments[J]. Bioinformatics, 2017, 33 (24): 3991- 3992.
doi: 10.1093/bioinformatics/btx521 |
25 |
WATERHOUSE A , BERTONI M , BIENERT S , et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Res, 2018, 46 (W1): W296- W303.
doi: 10.1093/nar/gky427 |
26 | HORTON P , PARK K J , OBAYASHI T , et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Res, 2007, 35 (S2): W585- W587. |
27 |
SCHMITTGEN T D , LIVAK K J . Analyzing real-time PCR data by the comparative CT method[J]. Nat Protoc, 2008, 3 (6): 1101- 1108.
doi: 10.1038/nprot.2008.73 |
28 | 黄雨馨, 梁文姿, 陈秀文, 等. 自噬在毛发再生中的作用[J]. 中国组织工程研究, 2024, 28 (7): 1112- 1117. |
HUANG Y X , LIANG W Z , CHEN X W , et al. Role of autophagy in hair regeneration[J]. Chinese Journal of Tissue Engineering Research, 2024, 28 (7): 1112- 1117. | |
29 | 万梅, 钟意, 翁祖铨, 等. 自噬抑制剂通过氧化应激诱导人头皮毛乳头细胞早衰进程[J]. 中国皮肤性病学杂志, 2023, 37 (7): 748- 754. |
WAN M , ZHONG Y , WENG Z Q , et al. Autophagy inhibitors induce premature senescence of human scalp dermal papilla cells by oxidative stress[J]. The Chinese Journal of Dermatovenereology, 2023, 37 (7): 748- 754. | |
30 | 罗怡. SCD1通过抑制自噬对毛囊生长的调控作用及机制研究[D]. 重庆: 重庆医科大学, 2022. |
LUO Y. Role and mechanism of SCD1 by inhibiting autogpagy on hair follice[D]. Chongqing: Chongqing Medical University, 2022. (in Chinese) | |
31 |
张敏, 黄蓉, 段亚君, 等. 霍山石斛通过激活自噬和抑制凋亡促进脱发模型小鼠生发作用[J]. 合肥工业大学学报(自然科学版), 2022, 45 (6): 844- 848.
doi: 10.3969/j.issn.1003-5060.2022.06.021 |
ZHANG M , HUANG R , DUAN Y J , et al. Dendrobium huoshanense promotes hair growth in mouse model of alopecia by activating autophagy and inhibiting apoptosis[J]. Journal of Hefei University of Technology (Natural Science), 2022, 45 (6): 844- 848.
doi: 10.3969/j.issn.1003-5060.2022.06.021 |
|
32 |
NAKATOGAWA H , SUZUKI K , KAMADA Y , et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast[J]. Nat Rev Mol Cell Biol, 2009, 10 (7): 458- 467.
doi: 10.1038/nrm2708 |
33 | YANG Z F , KLIONSKY D J . An overview of the molecular mechanism of autophagy[M]. //LEVINE B, YOSHIMORI T, DERETIC V.Autophagy in Infection and Immunity.Berlin: Springer, 2009: 1- 32. |
34 |
OBARA K , SEKITO T , OHSUMI Y . Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae[J]. Mol Biol Cell, 2006, 17 (4): 1527- 1539.
doi: 10.1091/mbc.e05-09-0841 |
35 |
OHTSUBO K , MARTH J D . Glycosylation in cellular mechanisms of health and disease[J]. Cell, 2006, 126 (5): 855- 867.
doi: 10.1016/j.cell.2006.08.019 |
36 |
CHANG Y Y , NEUFELD T P . An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation[J]. Mol Biol Cell, 2009, 20 (7): 2004- 2014.
doi: 10.1091/mbc.e08-12-1250 |
37 |
MEI Y , GLOVER K , SU M F , et al. Conformational flexibility of BECN1:essential to its key role in autophagy and beyond[J]. Protein Sci, 2016, 25 (10): 1767- 1785.
doi: 10.1002/pro.2984 |
38 |
LIU Y , WEI C H , LI C , et al. Phosphoinositide-3-kinase regulatory subunit 4 participates in the occurrence and development of amyotrophic lateral sclerosis by regulating autophagy[J]. Neural Regen Res, 2022, 17 (7): 1609.
doi: 10.4103/1673-5374.330621 |
39 |
WANG Y D , LI J H , ZHENG H T , et al. Cezanne promoted autophagy through PIK3C3 stabilization and PIK3C2A transcription in lung adenocarcinoma[J]. Cell Death Discov, 2023, 9 (1): 302.
doi: 10.1038/s41420-023-01599-4 |
40 |
SHEN Q H , SHI Y , LIU J Q , et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation[J]. Autophagy, 2021, 17 (5): 1157- 1169.
doi: 10.1080/15548627.2020.1752471 |
41 | TANIDA I , UENO T , KOMINAMI E . LC3 and Autophagy[M]. //DERETIC V.Autophagosome and Phagosome.Humana Totowa: Springer, 2008: 77- 88. |
42 |
FU L L , CHENG Y , LIU B . Beclin-1:autophagic regulator and therapeutic target in cancer[J]. Int J Biochem Cell Biol, 2013, 45 (5): 921- 924.
doi: 10.1016/j.biocel.2013.02.007 |
43 |
ICHIMURA Y , KOMATSU M . Selective degradation of p62 by autophagy[J]. Semin Immunopathol, 2010, 32 (4): 431- 436.
doi: 10.1007/s00281-010-0220-1 |
44 |
HWANG J H , LEE H Y , CHUNG K B , et al. Non-thermal atmospheric pressure plasma activates Wnt/β-catenin signaling in dermal papilla cells[J]. Sci Rep, 2021, 11 (1): 16125.
doi: 10.1038/s41598-021-95650-y |
45 |
TIAN Y Z , YANG X M , DU J W , et al. Differential methylation and transcriptome integration analysis identified differential methylation annotation genes and functional research related to hair follicle development in sheep[J]. Front Genet, 2021, 12, 735827.
doi: 10.3389/fgene.2021.735827 |
46 |
MÜLLER-RÖVER S , ROSSITER H , LINDNER G , et al. Hair follicle apoptosis and Bcl-2[J]. J Investig Dermatol Symp Proc, 1999, 4 (3): 272- 277.
doi: 10.1038/sj.jidsp.5640228 |
47 |
KISO M , HAMAZAKI T S , ITOH M , et al. Synergistic effect of PDGF and FGF2 for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro[J]. J Dermatol Sci, 2015, 79 (2): 110- 118.
doi: 10.1016/j.jdermsci.2015.04.007 |
48 | 孙露露, 石福岳, 秦立志, 等. 皖系长毛兔不同周龄Wnt10b、SFRP2基因在皮肤中的表达规律[J]. 中国畜牧杂志, 2013, 49 (13): 4- 8. |
SUN L L , SHI F Y , QIN L Z . The expressions rules of Wnt10b and SFRP2 gene in skin of Wanxi Angora rabbit[J]. Chinese Journal of Animal Science, 2013, 49 (13): 4- 8. | |
49 | KIM B K , YOON S K . Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation[J]. Ann Dermatol, 2014, 26 (1): 79- 87. |
50 |
INUI S , FUKUZATO Y , NAKAJIMA T , et al. Androgen-inducible TGF-β1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understanding paradoxical effects of androgen on human hair growth[J]. FASEB J, 2002, 16 (14): 1967- 1969.
doi: 10.1096/fj.02-0043fje |
[1] | Yi WANG, Juan GAO, Yuemin HU, Yuefei YANG, Bojun FAN, Huiming JU. Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3408-3417. |
[2] | Yu CHEN, Ziqing XIU, Musa MGENI, Yi SHI, Junqiu ZHANG, Xiaoyu JIANG, Jingzhi LÜ, Yawang SUN. Effects of Dandelion and Akebia Extract on Growth Performance, Intestinal Health and Relative Expression of Drug Transporter Genes in Weaned Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3725-3739. |
[3] | Lirui ZHANG, Beiyu ZHANG, Yujuan LI, Yongxu LIU, Hong ZHAO, Fuchang LI, Lei LIU. Effects of Dietary Methionine Level on Wool Production Performance and Hair Follicle Development of Angora Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3024-3031. |
[4] | Xiaosong WANG, Dong LI, Shu LI, Jiali CHEN, Yongxu LIU, Hong ZHAO, Fuchang LI, Lei LIU. Effects of Dietary Different Copper Levels on Production Performance and Hair Follicle Development in Angora Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3032-3039. |
[5] | Yuanyuan LI, Tianyu WANG, Meng LI, Wenhui ZHANG, Yinghui WANG, Tianrui ZHAO, Haojie LI, Yangfei ZHAO, Jinming WANG. Selenomethionine, through PINK1/Parkin-mediated Mitochondrial Autophagy, Alleviates Fluoride-induced Depressive-like Behavior [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3213-3224. |
[6] | Mingliang HE, Xiaoyang LÜ, Yongqing JIANG, Zhenghai SONG, Yeqing WANG, Huiguo YANG, Shanhe WANG, Wei SUN. Function Analysis of SOX18 in Hu Sheep Hair Follicle Dermal Papilla Cells Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2409-2420. |
[7] | Hao CHEN, Ge HAO, Jiayan PU, Jie XIAO, Changming XIONG, Wei HE, Yuhua ZHU, Liwen XU, Qing JIANG, Guangyou YANG. Evaluation of the Immune Protective Effect of Recombinant MIC2 from Eimeria intestinalis in Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2588-2598. |
[8] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[9] | WU Wenying, XIA Qing, HU Mengjie, ZHAO Yixuan, WANG Chen, ZHANG Yuhao, HAO Chengwu, HE Sun, GUO Aizhen, CHEN Jianguo, CHEN Yingyu. Establishment of Rabbit Challenge Model of Mycoplasma bovis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1268-1277. |
[10] | KANG Jia, DUAN Xiangru, YIN Xuejiao, YANG Ruochen, LI Taichun, SHAN Xinyu, CHEN Meijing, ZHANG Yingjie, LIU Yueqin. Effects of Cysteine and Methionine on Secondary Hair Follicle Growth and Hair Dermal Papilla Cell Proliferation in vitro in Cashmere Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 515-527. |
[11] | CHEN Mengjuan, LIU Yuqing, WANG Zhitong, WEN Jiale, XU Huifen, YU Guangqing, LI Ming. Construction of Eukaryotic Expression Vector, Expression Pattern of BMP15 Gene, and Its Expression in Ovary of New Zealand White Rabbit [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 562-575. |
[12] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[13] | LIU Yueyang, LI Mengyuan, NIE Xueyi, MA Yabo, HOU Yuxin, MA Boli, YANG Yi, XU Jinrui. The Regulation of Calcium-binding Protein S100A4 on Autophagy in THP-1 Cells Infected with Bacillus Calmette-Guérin [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 311-322. |
[14] | ZHANG Qianwen, LIU Yumei, SHI Lihui, LIANG Wenjun, LI Mengyun, WANG Yuqin, ZHANG Ziqiang. Pathological Observation and Drug Sensitivity Analysis of Salmonella Infection in Female Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3510-3518. |
[15] | CHEN Chun, KANG Zhaofeng, WEI Yue, LI Guanhong, WU Yanping, XIE Jinfang. Correlation of Wnt3a Gene Polymorphism with Skin Follicle Traits in Chongren Partridge Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2810-2823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||