Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1356-1369.doi: 10.11843/j.issn.0366-6964.2024.04.002
• REVIEW • Previous Articles Next Articles
PENG Peiya1, CHEN Yuhan1, YANG Long1, WANG Ming1, ZHAO Ruiting1, HE Jun1, YIN Yulong1,2*, LIU Mei1*
Received:
2023-10-16
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369.
[1] MACDONALD J R, ZIMAN R, YUEN R K C, et al. The Database of Genomic Variants:a curated collection of structural variation in the human genome[J]. Nucleic Acids Res, 2014, 42(D1):D986-D992. [2] PIROOZNIA M, GOES F S, ZANDI P P. Whole-genome CNV analysis:advances in computational approaches[J]. Front Genet, 2015, 6:138. [3] HOU Y L, LIU G E, BICKHART D M, et al. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle[J]. Funct Integr Genomics, 2012, 12(1):81-92. [4] SHEN W, SZANKASI P, DURTSCHI J, et al. Genome-wide copy number variation detection using NGS:data analysis and interpretation[J]. Methods Mol Biol, 2019, 1908:113-124. [5] PEI S W, WANG L, CAO X T, et al. Research progress on genomic copy number variations in cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(5):871-878. (in Chinese) 裴生伟, 王丽, 曹学涛, 等. 牛全基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2018, 49(5):871-878. [6] PINKEL D, SEGRAVES R, SUDAR D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays[J]. Nat Genet, 1998, 20(2):207-211. [7] REDON R, ISHIKAWA S, FITCH K R, et al. Global variation in copy number in the human genome[J]. Nature, 2006, 444(7118):444-454. [8] CARTER N P. Methods and strategies for analyzing copy number variation using DNA microarrays[J]. Nat Genet, 2007, 39(S7):S16-S21. [9] ZHU M F, NEED A C, HAN Y J, et al. Using ERDS to infer copy-number variants in high-coverage genomes[J]. Am J Hum Genet, 2012, 91(3):408-421. [10] YANG H, ZHU D M. Combinatorial detection algorithm for copy number variations using high-throughput sequencing reads[J]. Int J Patt Recogn Artif Intell, 2019, 33(14):1950022. [11] CHEN Y, ZHAO L, WANG Y, et al. SeqCNV:a novel method for identification of copy number variations in targeted next-generation sequencing data[J]. BMC Bioinformatics, 2017, 18(1):147. [12] TREFFER R, DECKERT V. Recent advances in single-molecule sequencing[J]. Curr Opin Biotechnol, 2010, 21(1):4-11. [13] JAIN M, OLSEN H E, PATEN B, et al. The oxford nanopore MinION:delivery of nanopore sequencing to the genomics community[J]. Genome Biol, 2016, 17(1):239. [14] NORRIS A L, WORKMAN R E, FAN Y F, et al. Nanopore sequencing detects structural variants in cancer[J]. Cancer Biol Ther, 2016, 17(3):246-253. [15] LIAO Y C, LIN S H, LIN H H. Completing bacterial genome assemblies:strategy and performance comparisons[J]. Sci Rep, 2015, 5(1):8747. [16] LIU G E, HOU Y L, ZHU B, et al. Analysis of copy number variations among diverse cattle breeds[J]. Genome Res, 2010, 20(5):693-703. [17] ZHANG L Z, JIA S G, YANG M J, et al. Detection of copy number variations and their effects in Chinese bulls[J]. BMC genomics, 2014, 15(1):480. [18] LIU M, FANG L Z, LIU S L, et al. Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins[J]. BMC Genomics, 2019, 20(1):181. [19] BAE J S, CHEONG H S, KIM L H, et al. Identification of copy number variations and common deletion polymorphisms in cattle[J]. BMC Genomics, 2010, 11(1):232. [20] KUMAR H, PANIGRAHI M, SARAVANAN K A, et al. Genome-wide detection of copy number variations in Tharparkar cattle[J]. Anim Biotechnol, 2023, 34(2):448-455. [21] ZHOU Y, CONNOR E E, WIGGANS G R, et al. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle[J]. BMC Genomics, 2018, 19(1):314. [22] AHMAD S F, SINGH A, PANDA S, et al. Genome-wide elucidation of CNV regions and their association with production and reproduction traits in composite Vrindavani cattle[J]. Gene, 2022, 830:146510. [23] GAO Y H, JIANG J P, YANG S H, et al. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing[J]. BMC Genomics, 2017, 18(1):265. [24] XU Y, JIANG Y, SHI T, et al. Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds[J]. PLoS One, 2017, 12(8):e0183921. [25] LIU M, LI B, HUANG Y Z, et al. Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits[J]. Livest Sci, 2016, 194:44-50. [26] LIU M, LI B, SHI T, et al. Copy number variation of bovine SHH gene is associated with body conformation traits in Chinese beef cattle[J]. J Appl Genet, 2019, 60(2):199-207. [27] LIU S L, KANG X L, CATACCHIO C R, et al. Computational detection and experimental validation of segmental duplications and associated copy number variations in water buffalo (Bubalus bubalis)[J]. Funct Integr Genomics, 2019, 19(3):409-419. [28] SINGH V K, SINGH S, NANDHINI P B, et al. Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent[J]. Anim Biotechnol, 2023:1-12. [29] FONTANESI L, MARTELLI P L, BERETTI F, et al. An initial comparative map of copy number variations in the goat (Capra hircus) genome[J]. BMC Genomics, 2010, 11(1):639. [30] JENKINS G M, GODDARD M E, BLACK M A, et al. Copy number variants in the sheep genome detected using multiple approaches[J]. BMC Genomics, 2016, 17(1):441. [31] SALEHIAN-DEHKORDI H, XU Y X, XU S S, et al. Genome-wide detection of copy number variations and their association with distinct phenotypes in the world's sheep[J]. Front Genet, 2021, 12:670582. [32] YANG L, XU L Y, ZHOU Y, et al. Diversity of copy number variation in a worldwide population of sheep[J]. Genomics, 2018, 110(3):143-148. [33] KANG X L, LI M X, LIU M, et al. Copy number variation analysis reveals variants associated with milk production traits in dairy goats[J]. Genomics, 2020, 112(6):4934-4937. [34] MORADI M H, MAHMODI R, FARAHANI A H K, et al. Genome-wide evaluation of copy gain and loss variations in three Afghan sheep breeds[J]. Sci Rep, 2022, 12(1):14286. [35] LIU M, ZHOU Y, ROSEN B D, et al. Diversity of copy number variation in the worldwide goat population[J]. Heredity (Edinb), 2019, 122(5):636-646. [36] LIU M, CHENG J, CHEN Y H, et al. Distribution of DGAT1 copy number variation in Chinese goats and its associations with milk production traits[J]. Anim Biotechnol, 2023, 34(4):980-985, doi:10.1080/10495398.2021.2007118. [37] LIU M, WOODWARD-GREENE J, KANG X L, et al. Genome-wide CNV analysis revealed variants associated with growth traits in African indigenous goats[J]. Genomics, 2020, 112(2):1477-1480. [38] NANDOLO W, MÉSZÁROS G, WURZINGER M, et al. Detection of copy number variants in African goats using whole genome sequence data[J]. BMC Genomics, 2021, 22(1):398. [39] ZHANG R Q, WANG J J, ZHANG T, et al. Copy-number variation in goat genome sequence:A comparative analysis of the different litter size trait groups[J]. Gene, 2019, 696:40-46. [40] YUAN C, LU Z K, GUO T T, et al. A global analysis of CNVs in Chinese indigenous fine-wool sheep populations using whole-genome resequencing[J]. BMC Genomics, 2021, 22(1):78. [41] DONG Y, ZHANG X L, XIE M, et al. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication[J]. BMC Genomics, 2015, 16(1):431. [42] NORRIS B J, WHAN V A. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep[J]. Genome Res, 2008, 18(8):1282-1293. [43] CHEBII V J, MPOLYA E A, OYOLA S O, et al. Genome scan for variable genes involved in environmental adaptations of nubian ibex[J]. J Mol Evol, 2021, 89(7):448-457. [44] HU L Y, ZHANG L Z, LI Q, et al. Genome-wide analysis of CNVs in three populations of Tibetan sheep using whole-genome resequencing[J]. Front Genet, 2022, 13:971464. [45] FADISTA J, NYGAARD M, HOLM L E, et al. A snapshot of CNVs in the pig genome[J]. PLoS One, 2008, 3(12):e3916. [46] WANG J Y, JIANG J C, WANG H F, et al. Improved detection and characterization of copy number variations among diverse pig breeds by array CGH[J]. G3(Bethesda), 2015, 5(6):1253-1261. [47] LIU X Q, JIANG J, HE J, et al. Research progress of wnt wignal transduction regulating ntramuscular fat content in pigs[J]. Animal Science Abroad:Pigs and Poultry, 2012, 32(1):78-80. (in Chinese) 刘晓琴, 蒋隽, 何俊, 等. Wnt信号转导调控猪肌内脂肪含量研究进展[J]. 国外畜牧学:猪与禽, 2012, 32(1):78-80. [48] QIU H Q, XIAO S J, GUO Y M. Detection of genome-wide copy number variation using porcine 1.4 M high-density SNP chips in Bama xiang pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9):2079-2088. (in Chinese) 邱恒清, 肖石军, 郭源梅. 利用猪1.4 M高密度SNP芯片检测巴马香猪全基因组拷贝数变异[J]. 畜牧兽医学报, 2020, 51(9):2079-2088. [49] CHEN C Y, QIAO R M, WEI R X, et al. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits[J]. BMC Genomics, 2012, 13(1):733. [50] WANG Y, ZHANG T R, WANG C D. Detection and analysis of genome-wide copy number variation in the pig genome using an 80 K SNP Beadchip[J]. J Anim Breed Genet, 2020, 137(2):166-176. [51] XU C L, ZHANG W, JIANG Y, et al. Genome-wide detection and analysis of copy number variation in anhui indigenous and western commercial pig breeds using porcine 80K SNP BeadChip[J]. Genes (Basel), 2023, 14(3):654. [52] JIANG J C, WANG J Y, WANG H F, et al. Global copy number analyses by next generation sequencing provide insight into pig genome variation[J]. BMC Genomics, 2014, 15(1):593. [53] ZHENG X R, ZHAO P, JYANG K J, et al. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits[J]. J Anim Sci Biotechnol, 2020, 11:42. [54] RAN X Q, PAN H, HUANG S H, et al. Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig[J]. J Anim Physiol Anim Nutr (Berl), 2018, 102(5):1320-1327. [55] QIU Y B, DING R R, ZHUANG Z W, et al. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs[J]. BMC Genomics, 2021, 22(1):332. [56] DING R R, ZHUANG Z W, QIU Y B, et al. A composite strategy of genome-wide association study and copy number variation analysis for carcass traits in a Duroc pig population[J]. BMC Genomics, 2022, 23(1):590. [57] WEI X, SHU Z, WANG L G, et al. Copy number variations contribute to intramuscular fat content differences by affecting the expression of PELP1 alternative splices in Pigs[J]. Animals(Basel), 2022, 12(11):1382. [58] FAN S H, KONG C C, CHEN Y G, et al. Copy number variation analysis revealed the evolutionary difference between Chinese indigenous pigs and asian wild boars[J]. Genes (Basel), 2023, 14(2):472. [59] ZHANG W, ZHOU M, LIU L Q, et al. Population structure and selection signatures underlying domestication inferred from genome-wide copy number variations in Chinese indigenous pigs[J]. Genes (Basel), 2022, 13(11):2026. [60] LONG Y, SU Y, AI H S, et al. A genome-wide association study of copy number variations with umbilical hernia in swine[J]. Anim Genet, 2016, 47(3):298-305. [61] WANG W. Genome detection of copy number variations among diverse horse breeds by array CGH[D]. Hohhot:Inner Mongolia Agricultural University, 2014. (in Chinese) 王伟. 不同品种马基因组拷贝数变异研究[D]. 呼和浩特:内蒙古农业大学, 2014. [62] WANG M, LIU Y, BI X K, et al. Genome-wide detection of copy number variants in chinese indigenous horse breeds and verification of CNV-overlapped genes related to heat adaptation of the Jinjiang Horse[J]. Genes (Basel), 2022, 13(4):603. [63] DURWARD-AKHURST S A, SCHAEFER R J, GRANTHAM B, et al. Genetic variation and the distribution of variant types in the horse[J]. Front Genet, 2021, 12:758366. [64] AL ABRI M A, HOLL H M, KALLA S E, et al. Whole genome detection of sequence and structural polymorphism in six diverse horses[J]. PLoS One, 2020, 15(4):e0230899. [65] GU J J, LI S, ZHU B, et al. Genetic variation and domestication of horses revealed by 10 chromosome-level genomes and whole-genome resequencing[J]. Mol Ecol Resour, 2023, 23(7):1656-1672. [66] TANG X W, ZHU B, REN R M, et al. Genome-wide copy number variation detection in a large cohort of diverse horse breeds by whole-genome sequencing[J]. Front Vet Sci, 2023, 10:1296213. [67] GAO X, WANG S, WANG Y F, et al. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak[J]. Nat Commun, 2022, 13(1):4887. [68] LUO X E. Whole genome assembly and comparative genomics analysis in swamp buffalo and river buffal[D]. Nanning:Guangxi University, 2020. (in Chinese) 罗西尔. 沼泽型水牛和河流型水牛染色体水平全基因组组装及比较研究[D]. 南宁:广西大学, 2020. [69] GAO Y H, MA L, LIU G E. Initial analysis of structural variation detections in cattle using long-read sequencing methods[J]. Genes (Basel), 2022, 13(5):828. [70] LAMB H J, ROSS E M, NGUYEN L T, et al. Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing[J]. J Anim Sci, 2020, 98(5):skaa127. [71] LOW W Y, TEARLE R, LIU R J, et al. Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle[J]. Nat Commun, 2020, 11(1):2071. [72] LEONARD A S, CRYSNANTO D, FANG Z H, et al. Structural variant-based pangenome construction has low sensitivity to variability of haplotype-resolved bovine assemblies[J]. Nat Commun, 2022, 13(1):3012. [73] ZHOU Y, YANG L, HAN X T, et al. Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history[J]. Genome Res, 2022, 32(8):1585-1601. [74] DU H, DIAO C G, ZHAO P J, et al. Integrated hybrid de novo assembly technologies to obtain high-quality pig genome using short and long reads[J]. Brief Bioinform, 2021, 22(5):bbaa399. [75] FANG X D, MOU Y L, HUANG Z Y, et al. The sequence and analysis of a Chinese pig genome[J]. Gigascience, 2012, 1(1):16. [76] LI M Z, TIAN S L, JIN L, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars[J]. Nat Genet, 2013, 45(12):1431-1438. [77] ZHANG L, HUANG Y M, SI J L, et al. Comprehensive inbred variation discovery in Bama pigs using de novo assemblies[J]. Gene, 2018, 679:81-89. [78] YANG Y L, LIAN J M, XIE B K, et al. Chromosome-scale de novo assembly and phasing of a Chinese indigenous pig genome[Z]. BioRxiv, 2019, doi:10.1101/770958. [79] ZHOU R, LI S T, YAO W Y, et al. The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication[J]. Mol Ecol Resour, 2021, 21(6):2077-2092. [80] MA H M, JIANG J, HE J, et al. Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds[J]. Mol Ecol Resour, 2022, 22(4):1508-1520. [81] JIANG Y F, WANG S, WANG C L, et al. Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs[J]. Iscience, 2023, 26(3):106119. [82] BICKHART D M, ROSEN B D, KOREN S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome[J]. Nat Genet, 2017, 49(4):643-650. [83] LI R, YANG P, LI M, et al. A Hu sheep genome with the first ovine Y chromosome reveal introgression history after sheep domestication[J]. Sci China Life Sci, 2021, 64(7):1116-1130. [84] LI R, GONG M, ZHANG X M, et al. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes[J]. Genome Res, 2023, 33(3):463-477. [85] LI R, GONG M, ZHANG X M, et al. The first sheep graph-based pan-genome reveals the spectrum of structural variations and their effects on tail phenotypes[J]. BioRxiv, 2021, doi:10.1101/2021.12.22.472709. [86] LI R, YANG P, DAI X L, et al. A near complete genome for goat genetic and genomic research[J]. Genet Sel Evol, 2021, 53(1):74. [87] KENT M, MOSER M, BOMAN I A, et al. Insertion of an endogenous Jaagsiekte sheep retrovirus element into the BCO2-gene abolishes its function and leads to yellow discoloration of adipose tissue in Norwegian Spælsau (Ovis aries)[J]. BMC Genomics, 2021, 22(1):492. |
[1] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[2] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[3] | KANG Jiawei, HUANG Xuankai, WANG Zhipeng, ZHANG Aizhen, MENG Fangrong, GAI Peng, BAO Junfu, SUN Kexin, SONG Shaokang, SUN Pan, CHEN Yichuan, ZHANG Lei, GAO Shengyue, CHANG Minghang. Estimation of Genetic Parameters for Growth, Reproduction, and Body Measurements Traits in Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1936-1944. |
[4] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[5] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[6] | DONG Shucan, MAO Shuaixiang, WU Cuiying, LI Yaokun, SUN Baoli, GUO Yongqing, DENG Ming, LIU Dewu, LIU Guangbin. The Effect of the Androgen Receptor Inhibitor Enzalutamide on Proliferation and Apoptosis of Goat Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2022-2031. |
[7] | LI Qiuyun, TIAN Xinyuan, LIAO Wensheng, ZHANG Huanrong, REN Yupeng, YANG Falong, ZHU Jiangjiang, XIANG Hua. Effects of SOCS2 on Proliferation, Cycle and Apoptosis of Turbinate Bone Cells in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2226-2240. |
[8] | LI Pengfei, GAO Guiqin, ZHOU Guangqing, WU Jinyan, YAN Xinmin, CAO Xiaoan, HE Jijun, YUAN Ligang, SHANG Youjun. Establishment and Application of TaqMan Fluorescence Quantitative RT-PCR Detection Method for Enzootic Nasal Tumor Virus of Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2259-2266. |
[9] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[10] | ZHANG Shaohua, WANG Shuai, ZOU Yang, LIU Zhongli, CAI Xuepeng. Advances in Detection Approaches for Ovine Haemonchosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1499-1510. |
[11] | YANG Yang, YU Qian, LIU Yucheng, YANG Hua, ZHAO Zhuo, WANG Limin, ZHOU Ping, YANG Qingyong, DAI Rong. Identification and Tissue Expression Analysis of the Sheep MYL Gene Family [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1551-1564. |
[12] | WANG Zhongbo, LIU Shuang, HE Lixia, FENG Xue, YANG Mengli, WANG Shuzhe, LIU Yuan, FENG Lan, DING Xiaoling, JI Guoshang, YANG Runjun, ZHANG Lupei, MA Yun. Metabolomics Analysis on Different Muscle Tissues of Guyuan Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1565-1578. |
[13] | TIAN Rui, XU Sixiang, XIE Feng, LIU Guangjin, WANG Gang, LI Qingxia, DAI Lei, XIE Guoxin, ZHANG Qiongwen, LU Yajing, WANG Guangwen, WANG Jinxiu, ZHANG Wei. Bioinformatics Analysis of the Genome of Clostridium perfringens Isolated from Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1707-1715. |
[14] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
[15] | XU Donghui, XU Yuhui, LI Ruizhe, CHENG Haijian, MA Zhijie. Research Progress of Genome Copy Number Variations in Yak [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 933-943. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||