[1] SCHERER S W, LEE C, BIRNEY E, et al.Challenges and standards in integrating surveys of structural variation[J].Nat Genet, 2007, 39(7):S7-S15. [2] ZHOU J H, LIU L Y, REYNOLDS E, et al.Discovering Copy number variation in dual-purpose Xinjiang brown cattle[J].Front Genet, 2022, 12:747431. [3] HUANG Y Z, LI Y J, WANG X H, et al.An atlas of CNV maps in cattle, goat and sheep[J].Sci China Life Sci, 2021, 64(10):1747-1764. [4] ZHANG W, ZHOU M, LIU L Q, et al.Population structure and selection signatures underlying domestication inferred from genome-wide copy number variations in Chinese indigenous pigs[J].Genes (Basel), 2022, 13(11):2026. [5] ZHANG L Z, JIA S G, YANG M J, et al.Detection of copy number variations and their effects in Chinese bulls[J].BMC Genomics, 2014, 15(1):480. [6] 张全伟.牦牛全基因组CNV及高原适应性候选基因(HO1)的研究[D].兰州:甘肃农业大学, 2015. ZHANG Q W.Genome-wide CNV and high altitude candidate genes of heme oxygenase (decycling) 1 in yak(Bos grunniens)[D].Lanzhou:Gansu Agricultural University, 2015.(in Chinese) [7] JIA C J, WANG H B, LI C, et al.Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip[J].BMC Genomics, 2019, 20(1):376. [8] ZHANG X, WANG K, WANG L Z, et al.Genome-wide patterns of copy number variation in the Chinese yak genome[J].BMC Genomics, 2016, 17(1):379. [9] WANG H, CHAI Z X, HU D, et al.A global analysis of CNVs in diverse yak populations using whole-genome resequencing[J]. BMC Genomics, 2019, 20(1):61. [10] 周学兰.基于重测序研究野牦牛和家牦牛全基因组结构变异[D].兰州:兰州大学, 2020. ZHOU X L.Study on the genomic structural variation of wild yak and domestic yak based on resequencing technology[D]. Lanzhou:Lanzhou University, 2020.(in Chinese) [11] E G X, YANG B G, ZHU Y B, et al.Genome-wide selective sweep analysis of the high-altitude adaptability of yaks by using the copy number variant[J].Biotech, 2020, 10(6):259. [12] MENG G Y, BAO Q, MA X M, et al.Analysis of copy number variation in the whole genome of normal-haired and long-haired Tianzhu white yaks[J].Genes (Basel), 2022, 13(12):2405. [13] ZHANG F W, WANG C, XU H Y, et al.Genomic analysis reveals a KIT-related chromosomal translocation associated with the white coat phenotype in yak[J].J Anim Breed Genet, 2023, 140(3):330-342. [14] 朱昌鸿.普通牛与牦牛基因组遗传变异的鉴定与功能基因挖掘[D].重庆:西南大学, 2022. ZHU C H.Identification and function gene identification of genetic variations between common cattle and yak genomes[D]. Chongqing:Southwest University, 2022.(in Chinese) [15] ZHANG F, GU W, HURLES M E, et al.Copy number variation in human health, disease, and evolution[J].Annu Rev Genomics Hum Genet, 2009, 10:451-481. [16] LOVETT S T.Encoded errors:mutations and rearrangements mediated by misalignment at repetitive DNA sequences[J].Mol Microbiol, 2004, 52(5):1243-1253. [17] LEE J A, CARVALHO C M B, LUPSKI J R.A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders[J].Cell, 2007, 131(7):1235-1247. [18] GOODIER J L, KAZAZIAN H H JR.Retrotransposons revisited:The restraint and rehabilitation of parasites[J].Cell, 2008, 135(1):23-35. [19] RICE A M, MCLYSAGHT A.Dosage sensitivity is a major determinant of human copy number variant pathogenicity[J].Nat Commun, 2017, 8:14366. [20] LIU Y Y, DU Y S, LIU W W, et al.Lack of association between NLGN3, NLGN4, SHANK2 and SHANK3 gene variants and autism spectrum disorder in a Chinese population[J].PLoS One, 2013, 8(2):e56639. [21] LEE C, IAFRATE A J, BROTHMAN A R.Copy number variations and clinical cytogenetic diagnosis of constitutional disorders[J].Nat Genet, 2007, 39(7 Suppl):S48-S54. [22] PINKEL D, SEGRAVES R, SUDAR D, et al.High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays[J].Nat Genet, 1998, 20(2):207-211. [23] IVAKHNO S, TAVARÉ S.CNAnova:a new approach for finding recurrent copy number abnormalities in cancer SNP microarray data[J].Bioinformatics, 2010, 26(11):1395-1402. [24] KATO M, NAKAMURA Y, TSUNODA T.An algorithm for inferring complex haplotypes in a region of copy-number variation[J].Am J Hum Genet, 2008, 83(2):157-169. [25] MASSAIA A, XUE Y L.Human Y chromosome copy number variation in the next generation sequencing era and beyond[J]. Hum Genet, 2017, 136(5):591-603. [26] XI R B, LEE S, PARK P J.A survey of copy-number variation detection tools based on high-throughput sequencing data[J].Curr Protoc Hum Genet, 2012, 75(1):7.19.1-7.19.5. [27] ZHANG L, BAI W Y, YUAN N, et al.Comprehensively benchmarking applications for detecting copy number variation[J].PLoS Comput Biol, 2019, 15(5):e1007069. [28] D'HAENE B, VANDESOMPELE J, HELLEMANS J.Accurate and objective copy number profiling using real-time quantitative PCR[J].Methods, 2010, 50(4):262-270. [29] 国家畜禽遗传资源委员会办公室.关于公布《国家畜禽遗传资源品种名录》的通知[J].中华人民共和国农业农村部公报, 2020(6):36. The National Commission on Livestock and Poultry Genetic Resources.Circular on relasing the directory of national livestock and poultry genetic resources[J].Gazette of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2020(6):36.(in Chinese) [30] 农业农村部.中华人民共和国农业农村部公告第381号[J].中华人民共和国农业农村部公报, 2021(1):126. Ministry of Agriculture and Rural Affairs.Notice No.381 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[J].Gazette of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2021(1):126.(in Chinese) [31] 农业农村部.中华人民共和国农业农村部公告第498号[J].中华人民共和国农业农村部公报, 2022(1):120. Ministry of Agriculture and Rural Affairs.Notice No.498 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[J].Gazette of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2022(1):120.(in Chinese) [32] 农业农村部.中华人民共和国农业农村部公告第635号[J].中华人民共和国农业农村部公报, 2023(1):99-101. Ministry of Agriculture and Rural Affairs.Notice No.635 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[J].Gazette of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2023(1):99-101.(in Chinese) [33] QIU Q, ZHANG G J, MA T, et al.The yak genome and adaptation to life at high altitude[J].Nat Genet, 2012, 44(8):946-949. [34] ZHANG S Z, LIU W Y, LIU X F, et al.Structural variants selected during yak domestication inferred from long-read whole-genome sequencing[J].Mol Biol Evol, 2021, 38(9):3676-3680. [35] GAO X, WANG S, WANG Y F, et al.Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak[J].Nat Commun, 2022, 13(1):4887. [36] ZHANG G W, GUAN J Q, LUO Z G, et al.A tremendous expansion of TSPY copy number in crossbred bulls (Bos taurus×Bos grunniens)[J].J Anim Sci, 2016, 94(4):1398-1407. [37] 官久强, 蒋小兵, 杨平贵, 等.牦牛、犏牛和黄牛组织中TSPY基因表达水平研究[J].黑龙江畜牧兽医, 2017(11):232-235, 298. GUAN J Q, JIANG X B, YANG P G, et al.The Expression of TSPY in difference tissue of yak, cattle-yak and cattle[J].Heilongjiang Animal Science and Veterinary Medicine, 2017(11):232-235, 298.(in Chinese) [38] GOSHU H A, WU X Y, CHU M, et al.Copy number variations of KLF6 modulate gene transcription and growth traits in Chinese Datong yak (Bos grunniens)[J].Animals (Basel), 2018, 8(9):145. [39] GOSHU H A, WU X Y, CHU M, et al.Population genetic copy number variation of CHKB, KLF6, GPC1 and CHRM3 genes in Chinese domestic yak (Bos grunniens) breeds[J].Cogent Biol, 2018, 4(1):1471779. [40] GOSHU H A, WU X Y, CHU M, et al.Novel copy number variations of the CHRM3 gene associated with gene expression and growth traits in Chinese Datong yak (Bos grunniens)[J].J Appl Anim Res, 2020, 48(1):156-165. [41] GOSHU H A, CHU M, WU X Y, et al.Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds[J].Mol Genet Genomics, 2019, 294(3):549-561. [42] GE F, JIA C J, CHU M, et al.Copy Number variation of the CADM2 gene and its association with growth traits in yak[J].Animals (Basel), 2019, 9(12):1008. [43] ZHANG G W, WU Y H, LUO Z G, et al.Comparison of Y-chromosome-linked TSPY, TSPY2, and PRAMEY genes in taurus cattle, yaks, and interspecific hybrid bulls[J].J Dairy Sci, 2019, 102(7):6263-6275. [44] 吴雨徽.普通牛、牦牛和犏牛Y染色体基因表达模式及全基因组DNA甲基化差异分析[D].重庆:西南大学, 2019. WU Y H.Analysis of Y chromosome gene expressionpatterns and genome-wide DNA methylation differences in cattle, yak and yattle[D].Chongqing:Southwest University, 2019.(in Chinese) [45] HUANG C, GE F, REN W W, et al.Copy number variation of the HPGDS gene in the Ashidan yak and its associations with growth traits[J].Gene, 2021, 772:145382. [46] DAI R F, HUANG C, WU X Y, et al.Copy number variation (CNV) of the AHR gene in the Ashidan yak and its association with growth traits[J].Gene, 2022, 826:146454. [47] ZHANG Z L, CHU M, BAO Q, et al.Two different copy number variations of the SOX5 and SOX8 genes in yak and their association with growth traits[J].Animals (Basel), 2022, 12(12):1587. [48] REN W W, HUANG C, MA X M, et al.Association of HSF1 gene copy number variation with growth traits in the Ashidan yak[J].Gene, 2022, 842:146798. [49] LIU M D, HUANG C, DAI R F, et al.Copy number variations in the MICALL2 and MOGAT2 genes are associated with Ashidan yak growth traits[J].Animals (Basel), 2022, 12(20):2779. [50] LI X Y, HUANG C, LIU M D, et al.Copy number variation of the SOX6 gene and its associations with growth traits in Ashidan yak[J].Animals (Basel), 2022, 12(22):3074. [51] ERICKSON A, HE M X, BERGLUND E, et al.Spatially resolved clonal copy number alterations in benign and malignant tissue[J].Nature, 2022, 608(7922):360-367. [52] AGANEZOV S, YAN S M, SOTO D C, et al.A complete reference genome improves analysis of human genetic variation[J].Science, 2022, 376(6588):eabl3533. [53] GERSHMAN A, SAURIA M E G, GUITART X, et al.Epigenetic patterns in a complete human genome[J].Science, 2022, 376(6588):eabj5089. [54] ALTEMOSE N, LOGSDON G A, BZIKADZE A V, et al.Complete genomic and epigenetic maps of human centromeres[J]. Science, 2022, 376(6588):eabl4178. [55] YANG C T, ZHOU Y, SONG Y N, et al.The complete and fully-phased diploid genome of a male Han Chinese[J].Cell Res, 2023, 33(10):745-761. [56] ZHANG Y L, FU J, WANG K, et al.The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding[J].Plant Biotechnol J, 2022, 20(9):1642-1644. [57] CHEN J, WANG Z J, TAN K W, et al.A complete telomere-to-telomere assembly of the maize genome[J].Nat Genet, 2023, 55(7):1221-1231. |