[1] MANZOOR A, PATOO R A, AKRAM T, et al. Sperm sexing and its utility in commercial cattle production:a review[J]. Adv Anim Vet Sci, 2017, 5(7):293-298. [2] GARNER D L. Flow cytometric sexing of mammalian sperm[J]. Theriogenology, 2006, 65(5):943-957. [3] JOHNSON L A. Sexing mammalian sperm for production of offspring:the state-of-the-art[J]. Anim Reprod Sci, 2000, 60-61:93-107. [4] ESPINOSA-CERVANTES R, CÓRDOVA-IZQUIERDO A. Sexing sperm of domestic animals[J]. Trop Anim Health Prod, 2013, 45(1):1-8. [5] JOHNSON L A, WELCH G R. Sex preselection:high-speed flow cytometric sorting of X and Y sperm for maximum efficiency[J]. Theriogenology, 1999, 52(8):1323-1341. [6] VISHWANATH R, MORENO J F. Semen sexing-current state of the art with emphasis on bovine species[J]. Animal, 2018, 12(S1):s85-s96. [7] GAUR P, SAINI G, SAHARAN P, et al. Sex sorted semen-methods, constraints and future perspective[J]. Vet Res Int, 2020, 8(4):368-375. [8] NAIDU S J, ARANGASAMY A, SELVARAJU S, et al. Spermatozoa sorting techniques for the sex pre-selection:a review[J]. Indian J Anim Res, 2021, B(4530):1-10. [9] SHARPE J C, EVANS K M. Advances in flow cytometry for sperm sexing[J]. Theriogenology, 2009, 71(1):4-10. [10] NECULAI-VALEANU A S, ARITON A M. Game-changing approaches in sperm sex-sorting:microfluidics and nanotechnology[J]. Animals(Basel), 2021, 11(4):1182. [11] HE Q F, WU S H, HUANG M, et al. Effects of diluent pH on enrichment and performance of dairy goat X/Y sperm[J]. Front Cell Dev Biol, 2021, 9:747722. [12] GARNER D L, EVANS K M, SEIDEL G E. Sex-sorting sperm using flow cytometry/cell sorting[M]//CARRELL D T, ASTON K I. Spermatogenesis:Methods and Protocols. Totowa:Humana Press, 2013:279-295. [13] GONZÁLEZ-MARÍN C, GÓNGORA C E, MORENO J F, et al. Small ruminant SexedULTRATM sperm sex-sorting:status report and recent developments[J]. Theriogenology, 2021, 162:67-73. [14] GONZÁLEZ-MARÍN C, GÓNGORA C E, GILLIGAN T B, et al. In vitro sperm quality and DNA integrity of SexedULTRATM sex-sorted sperm compared to non-sorted bovine sperm[J]. Theriogenology, 2018, 114:40-45. [15] REN F, XI H M, REN Y J, et al. TLR7/8 signalling affects X-sperm motility via the GSK3α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos[J]. J Anim Sci Biotechnol, 2021, 12(1):89. [16] XIE Y S, XU Z Q, WU Z F, et al. Sex manipulation technologies progress in livestock:a review[J]. Front Vet Sci, 2020, 7:481. [17] PRASAD S, RANGASAMY S, SATHESHKUMAR S. Sex preselection in domestic animals-current status and future prospects[J]. Vet World, 2010, 3(7):346-348. [18] XIONG X R, ZHANG Y, XIONG Y, et al. The establishment of X, Y sperm sorting system in yak by flow cytometer[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2):399-407. (in Chinese) 熊显荣, 张雁, 熊燕, 等. 利用流式细胞仪建立牦牛X、Y精子分选体系的研究[J]. 畜牧兽医学报, 2021, 52(2):399-407. [19] POZDYSHEV D V, KOMBAROVA N A, MURONETZ V I. Biochemical features of X or Y chromosome-bearing spermatozoa for sperm sexing[J]. Biochemistry (Mosc), 2023, 88(5):655-666. [20] RAHMAN M S, PANG M G. New biological insights on X and Y chromosome-bearing spermatozoa[J]. Front Cell Dev Biol, 2020, 7:388. [21] YADAV S K, GANGWAR D K, SINGH J, et al. An immunological approach of sperm sexing and different methods for identification of X- and Y-chromosome bearing sperm[J]. Vet World, 2017, 10(5):498-504. [22] YATA V K. Recent advances and challenges in the development of novel sperm sexing methods[M]//YATA V K. Sperm Sexing and Its Role in Livestock Production. Singapore:Springer, 2022:65-81. [23] WU C H, CHEN W D, YANG W Z, et al. Expression of Toll-like receptors 7/8 in Boar reproductive system and evaluation of effect of their ligands on boar X/Y sperm sorting[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4):1490-1499. (in Chinese) 吴昌华, 陈伟东, 杨文政, 等. Toll样受体7/8在公猪生殖系统中的表达及其配体对猪X/Y精子分选效果评价[J]. 畜牧兽医学报, 2023, 54(4):1490-1499. [24] MA S J, XU Y J, HE K, et al. Molecular evolution and expression patterns of a multigene family of Toll-like receptors in ruminants[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9):3722-3734. (in Chinese) 马淑娟, 徐祎洁, 何珂, 等. 反刍动物Toll样受体多基因家族的分子进化及表达模式分析[J]. 畜牧兽医学报, 2023, 54(9):3722-3734. [25] YATA V K, SINGH S K, KUMAR S, et al. Use of sexed semen for genetic improvement of indigenous dairy cattle and buffaloes productivity[J]. Indian J Anim Sci, 2022, 92(7):797-805. [26] KRAWCZYK C M, HOLOWKA T, SUN J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation[J]. Blood, 2010, 115(23):4742-4749. [27] UMEHARA T, TSUJITA N, SHIMADA M. Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm[J]. PLoS Biol, 2019, 17(8):e3000398. [28] EVERTS B, AMIEL E, HUANG S C C, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKK? supports the anabolic demands of dendritic cell activation[J]. Nat Immunol, 2014, 15(4):323-332. [29] WEN F, LIU W D, LI Y, et al. TLR7/8 agonist (R848) inhibit bovine X sperm motility via PI3K/GSK3α/β and PI3K/NFκB pathways[J]. Int J Biol Macromol, 2023, 232:123485. [30] XU Y L, FAN Y, FAN W M, et al. RNASET2 impairs the sperm motility via PKA/PI3K/calcium signal pathways[J]. Reproduction, 2018, 155(4):383-392. [31] ZHU X X, SHI D Y, LI X Q, et al. TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3α[J]. Cell Signal, 2016, 28(3):148-156. [32] UMEHARA T, TSUJITA N, ZHU Z D, et al. A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos[J]. Nat Protoc, 2020, 15(8):2645-2667. [33] LIBERT C, DEJAGER L, PINHEIRO I. The X chromosome in immune functions:when a chromosome makes the difference[J]. Nat Rev Immunol, 2010, 10(8):594-604. [34] REN F. The research on key molecular mining of spermatogenesis and sex-sorted semen in dairy goats[D]. Yangling:Northwest A&F University, 2021. (in Chinese) 任发. 奶山羊精子发生关键分子挖掘与性控精液研究[D]. 杨凌:西北农林科技大学, 2021. [35] KWON W S, RAHMAN M S, LEE J S, et al. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa[J]. BMC Genomics, 2014, 15(1):897. [36] JOSHI H, MATHUR M, MOHANTY A, et al. Semen sexing in bovine:current status and the need to develop alternative techniques[J]. Indian J Anim Sci, 2021, 1(1):17-31. [37] SOLEYMANI B, PARVANEH S, MOSTAFAIE A. Goat polyclonal antibody against the sex determining region Y to Separate X- and Y-chromosome bearing spermatozoa[J]. Rep Biochem Mol Biol, 2019, 8(3):326-334. [38] SOLEYMANI B, MANSOURI K, RASTEGARI-POUYANI M, et al. Production of monoclonal antibody against recombinant bovine sex-determining region Y (SRY) and their preferential binding to Y chromosome-bearing sperm[J]. Reprod Domest Anim, 2021, 56(2):270-277. [39] CHOWDHURY M M R, XU L G, KONG R, et al. In vitro production of sex preselected cattle embryos using a monoclonal antibody raised against bull sperm epitopes[J]. Anim Reprod Sci, 2019, 205:156-164. [40] CHEN X L, ZHU H B, WU C J, et al. Identification of differentially expressed proteins between bull X and Y spermatozoa[J]. J Proteomics, 2012, 77:59-67. [41] DE CANIO M, SOGGIU A, PIRAS C, et al. Differential protein profile in sexed bovine semen:shotgun proteomics investigation[J]. Mol Biosyst, 2014, 10(6):1264-1271. [42] SCOTT C, DE SOUZA F F, ARISTIZABAL V H V, et al. Proteomic profile of sex-sorted bull sperm evaluated by SWATH-MS analysis[J]. Anim Reprod Sci, 2018, 198:121-128. [43] ZHANG J, HE D B, LIU C L, et al. Differential expression proteomics between X and Y spermatozoa of bull[J]. Journal of Inner Mongolia University:Natural Science Edition, 2023, 54(1):80-90. (in Chinese) 张洁, 何定波, 刘春丽, 等. 牛X与Y精子差异蛋白质组学研究[J]. 内蒙古大学学报:自然科学版, 2023, 54(1):80-90. [44] BYRNE K, LEAHY T, MCCULLOCH R, et al. Comprehensive mapping of the bull sperm surface proteome[J]. Proteomics, 2012, 12(23-24):3559-3579. [45] LI S F. The membrane protein differences of X/Y spermatozoa in dairy cattle and dairy goats[D]. Hohhot:Inner Mongolia University, 2021. (in Chinese) 李淑芳. 奶牛及奶山羊X、Y精子膜蛋白差异分析[D]. 内蒙古:内蒙古大学, 2021. [46] SHEN D, ZHOU C H, CAO M Y, et al. Differential membrane protein profile in bovine X-and Y-Sperm[J]. J Proteome Res, 2021, 20(6):3031-3042. [47] LAXMIVANDANA R, PATOLE C, SHARMA T R, et al. Differential proteins associated with plasma membrane in X-and/or Y-chromosome bearing spermatozoa in indicus cattle[J]. Reprod Domest Anim, 2021, 56(6):928-935. [48] OYEYIPO I P, VAN DER LINDE M, DU PLESSIS S S. Environmental exposure of sperm sex-chromosomes:a gender selection technique[J]. Toxicol Res, 2017, 33(4):315-323. [49] WURLINA W, HARIADI M U, SAFITRI E, et al. The effect of crude guava leaf tannins on motility, viability, and intact plasma membrane of stored spermatozoa of Etawa crossbred goats[J]. Vet World, 2020, 13(3):530-537. [50] MUEHLEIS P M, LONG S Y. The effects of altering the pH of seminal fluid on the sex ratio of rabbit offspring[J]. Fertil Steril, 1976, 27(12):1438-1445. [51] YOU Y A, KWON W S, SAIDUR RAHMAN M, et al. Sex chromosome-dependent differential viability of human spermatozoa during prolonged incubation[J]. Hum Reprod, 2017, 32(6):1183-1191. [52] CONTRI A, GLORIA A, ROBBE D, et al. Kinematic study on the effect of pH on bull sperm function[J]. Anim Reprod Sci, 2013, 136(4):252-259. [53] RIZVI A A, QURAISHI M I, SARKAR V, et al. The effect of pH and viscosity on bovine spermatozoa motility under controlled conditions[J]. Int Urol Nephrol, 2009, 41(3):523-530. [54] HE Q F, WU S H, GAO F, et al. Diluent pH affects sperm motility via GSK3α/β-hexokinase pathway for the efficient enrichment of X-sperm to increase the female kids rate of dairy goats[J]. Theriogenology, 2023, 201:1-11. [55] WONGTAWAN T, DARARATANA N, OONKHANOND B, et al. Zeta potential of bovine X and Y sperm and its application for sperm sorting[J]. Thai J Vet Med, 2018, 48(Suppl):O25-O26. [56] PHIPHATTANAPHIPHOP C, LEKSAKUL K, WANTA T, et al. Antibody-conjugated magnetic beads for sperm sexing using a multi-wall carbon nanotube microfluidic device[J]. Micromachines (Basel), 2022, 13(3):426. [57] DOMÍNGUEZ E, MORENO-IRUSTA A, CASTEX H R, et al. Sperm sexing mediated by magnetic nanoparticles in donkeys, a preliminary in vitro study[J]. J Equine Vet Sci, 2018, 65:123-127. [58] BURINARU T A, AVRAM M, AVRAM A, et al. Detection of circulating tumor cells using microfluidics[J]. ACS Comb Sci, 2018, 20(3):107-126. [59] LEE D, HWANG B, KIM B. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter[J]. Micro Nano Syst Lett, 2016, 4(1):2. [60] ZHANG Y L, CHEN X Y. Dielectrophoretic microfluidic device for separation of red blood cells and platelets:a model-based study[J]. J Braz Soc Mech Sci Eng, 2020, 42(2):89. [61] YANG P H, SUN X S, CHIU J F, et al. Transferrin-mediated gold nanoparticle cellular uptake[J]. Bioconjug Chem, 2005, 16(3):494-496. [62] GAMRAD L, MANCINI R, WERNER D, et al. Triplex-hybridizing bioconjugated gold nanoparticles for specific Y-chromosome sequence targeting of bull spermatozoa[J]. Analyst, 2017, 142(11):2020-2028. [63] WONGTAWAN T, DARARATANA N, THONGKITTIDILOK C, et al. Enrichment of bovine X-sperm using microfluidic dielectrophoretic chip:a proof-of-concept study[J]. Heliyon, 2020, 6(11):e05483. [64] DARARATANA N, TUANTRANONT A, WONGTAWAN T, et al. The dielectrophoresis microfluidic chip for cell separation:case study of separation of floating cell and moving cells[C]//Proceedings of the 8th Biomedical Engineering International Conference. Pattaya:IEEE, 2015:1-5. [65] QUELHAS J, SANTIAGO J, MATOS B, et al. Bovine semen sexing:sperm membrane proteomics as candidates for immunological selection of X-and Y-chromosome-bearing sperm[J]. Vet Med Sci, 2021, 7(5):1633-1641. [66] SRINGARM K, THONGKHAM M, MEKCHAY S, et al. High-efficiency bovine sperm sexing used magnetic-activated cell sorting by coupling scFv antibodies specific to Y-chromosome-bearing sperm on magnetic microbeads[J]. Biology (Basel), 2022, 11(5):715. [67] LI X M, YI Z R, ZHANG P Y, et al. Comparative analysis of the application effect of sexually controlled frozen semen and ordinary frozen semen in holstein dairy cows[J]. China Feed, 2023(8):38-41. (in Chinese) 李雪梅, 易宗容, 张平英, 等. 荷斯坦奶牛性控冻精与常规冻精应用效果比较分析[J]. 中国饲料, 2023(8):38-41. [68] HUANG M, CAO X Y, HE Q F, et al. Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm[J]. J Dairy Sci, 2022, 105(12):10020-10032. |