Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (6): 1779-1794.doi: 10.11843/j.issn.0366-6964.2022.06.012
• ANIMALGENETICS AND BREEDING • Previous Articles Next Articles
GAO Dengke1,2, ZHAO Hongcong1,2, DONG Hao1,2, JIN Yaping1,2, CHEN Huatao1,2*
Received:
2021-10-26
Online:
2022-06-23
Published:
2022-06-25
CLC Number:
GAO Dengke, ZHAO Hongcong, DONG Hao, JIN Yaping, CHEN Huatao. The Cloning, Expression Vector Construction and Function Analysis of Goat RORα Gene[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1779-1794.
[1] | WANG H. Circadian biology and its recent progresses[J]. Chinese Bulletin of Life Sciences, 2015, 27(11): 1313-1319. (in Chinese)王晗. 生物钟生物学及其研究进展[J]. 生命科学, 2015, 27(11): 1313-1319. |
[2] | XING C, SONG L. Regulation system for generation and maintenance of circadian rhythms[J]. Military Medical Sciences, 2017, 41(8): 698-702. (in Chinese)邢陈, 宋伦. 昼夜节律产生和维持的调控系统[J]. 军事医学, 2017, 41(8): 698-702. |
[3] | MARCHEVA B, RAMSEY K M, BUHR E D, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010, 466(7306): 627-631. |
[4] | ZHANG R, LAHENS N F, BALLANCE H I, et al. A circadian gene expression atlas in mammals: implications for biology and medicine[J]. Proc Natl Acad Sci U S A, 2014, 111(45): 16219-16224. |
[5] | ASTIZ M, HEYDE I, OSTER H. Mechanisms of communication in the mammalian circadian timing system[J]. Int J Mol Sci, 2019, 20(2): 343. |
[6] | ROSENWASSER A M, TUREK F W. Neurobiology of circadian rhythm regulation[J]. Sleep Med Clin, 2015, 10(4): 403-412. |
[7] | ABBOTT S M, ZEE P C. Circadian rhythms: implications for health and disease[J]. Neurol Clin, 2019, 37(3): 601-613. |
[8] | GIGUÈRE V, TINI M, FLOCK G, et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan hormone nuclear receptors[J]. Genes Dev, 1994, 8(5): 538-553. |
[9] | MA H Z, KANG J, FAN W G, et al. ROR: nuclear receptor for melatonin or not?[J]. Molecules, 2021, 26(9): 2693. |
[10] | PILORZ V, ASTIZ M, HEINEN K O, et al. The concept of coupling in the mammalian circadian clock network[J]. J Mol Biol, 2020, 432(12): 3618-3638. |
[11] | URIZ-HUARTE A, DATE A, ANG H, et al. The transcriptional repressor REV-ERB as a novel target for disease[J]. Bioorg Med Chem Lett, 2020, 30(17): 127395. |
[12] | STRATMANN M, STADLER F, TAMANINI F, et al. Flexible phase adjustment of circadian albumin D site-binding protein (Dbp) gene expression by CRYPTOCHROME1[J]. Genes Dev, 2010, 24(12): 1317-1328. |
[13] | UEDA H R, HAYASHI S, CHEN W B, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks[J]. Nat Genet, 2005, 37(2): 187-192. |
[14] | RIPPERGER J A, SCHIBLER U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions[J]. Nat Genet, 2006, 38(3): 369-374. |
[15] | POURCET B, DUEZ H. Circadian Control of inflammasome pathways: implications for circadian medicine[J]. Front Immunol, 2020, 11: 1630. |
[16] | JETTEN A M. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism[J]. Nucl Recept Signal, 2009, 7: e003. |
[17] | FAN J S, LV Z L, YANG G H, et al. Retinoic acid receptor-related orphan receptors: critical roles in tumorigenesis[J]. Front Immunol, 2018, 9: 1187. |
[18] | LI Z Q, ZHAO J, LIU H Y, et al. Melatonin inhibits apoptosis in mouse Leydig cells via the retinoic acid-related orphan nuclear receptor α/p53 pathway[J]. Life Sci, 2020, 246: 117431. |
[19] | JIA L L, JIN F, FU S Y, et al. Comparation of expression pattern of Clock genes in cashmere goat skin[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(2): 251-257. (in Chinese)贾丽丽, 金凤, 付绍印, 等. 生物钟基因在绒山羊皮肤中表达模式的比较[J]. 中国畜牧兽医, 2015, 42(2): 251-257. |
[20] | ZHAO Y H, LIU Z H, WANG L, et al. Expression of the RORα gene in Inner Mongolian cashmere goat hair follicles[J]. Genet Mol Res, 2015, 14(1): 380-388. |
[21] | LIU Z L, CHEN T, YANG D D, et al. Molecular cloning, bioinformatics analysis and transcriptional activity of promoter of nuclear factor erythroid 2-related factor(Nrf2) gene in pig[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(7): 1328-1339. (in Chinese)刘宗立, 陈涛, 杨丹丹, 等. 猪Nrf2基因克隆、生物信息学分析及启动子区转录活性分析[J]. 畜牧兽医学报, 2019, 50(7): 1328-1339. |
[22] | DU P F, CHEN B, GAO L G, et al. Cloning and expression analysis of chicken HMIT gene[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1811-1822. (in Chinese)杜鹏飞, 陈博, 高林歌, 等. 鸡HMIT基因的克隆与表达分析[J]. 畜牧兽医学报, 2020, 51(8): 1811-1822. |
[23] | WANG X J, XIANG H, ZHANG H R, et al. Cloning, sequence analysis and function prediction of HABP4 gene in goat[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3426-3438. (in Chinese)王宪军, 向华, 张焕容, 等. 山羊HABP4基因的克隆、序列分析及功能预测[J]. 畜牧兽医学报, 2021, 52(12): 3426-3438. |
[24] | MAURY E. Off the Clock: from circadian disruption to metabolic disease[J]. Int J Mol Sci, 2019, 20(7): 1597. |
[25] | YU E A, WEAVER D R. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes[J]. Aging (Albany NY), 2011, 3(5): 479-493. |
[26] | FAN J F, HE Y, WANG W Z, et al. Research progress of small molecular compounds regulating biological clock[J]. China Pharmacy, 2021, 32(7): 890-896. (in Chinese)凡杰夫, 何颖, 王伟忠, 等. 调控生物钟的小分子化合物的研究进展[J]. 中国药房, 2021, 32(7): 890-896. |
[27] | XIAO Y Y, ZHAO L J, LI W D, et al. Circadian clock gene BMAL1 controls testosterone production by regulating steroidogenesis-related gene transcription in goat Leydig cells[J]. J Cell Physiol, 2021, 236(9): 6706-6725. |
[28] | ZHAO H C, GAO D K, JIANG H Z, et al. Construction of eukaryotic expression vector and bioinformatics analysis of circadian CLOCK gene in goats[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4327-4338. (in Chinese)赵泓淙, 高登科, 江海圳, 等. 山羊生物钟基因CLOCK真核表达载体的构建和生物信息学分析[J]. 中国畜牧兽医, 2021, 48(12): 4327-4338. |
[29] | WANG Y Q, GAO D K, ZHAO H C, et al. Construction of a eukaryotic expression vector in goat NR1D1 gene and its bioinformatics analysis[J]. Chinese Journal of Animal Science, doi:10.19556/j.0258-7033.20210825-06.(in Chinese)王逸群, 高登科, 赵泓淙, 等. 山羊NR1D1基因真核表达载体的构建及生物信息学分析[J]. 中国畜牧杂志, doi:10.19556/j.0258-7033.20210825-06. |
[30] | ZHAO Y H, SUN Y M, LIU Z H, et al. Cloning and sequence analysis of RORα gene in inner Mongolian cashmere goat[J]. Journal of Inner Mongolia Agricultural University, 2010, 31(3): 1-4. (in Chinese)赵艳红, 孙永明, 刘志红, 等. 内蒙古绒山羊孤核受体RORα部分cDNA克隆及序列分析[J]. 内蒙古农业大学学报, 2010, 31(3): 1-4. |
[31] | CHEN C T, SCHULTZ J A, HAVEN S E, et al. Loss of RAR-related orphan receptor alpha (RORα) selectively lowers docosahexaenoic acid in developing cerebellum[J]. Prostaglandins Leukot Essent Fatty Acids, 2020, 152: 102036. |
[32] | YASUI H, MATSUZAKI Y, KONNO A, et al. Global knockdown of retinoid-related orphan Receptor α in mature Purkinje cells reveals aberrant cerebellar phenotypes of Spinocerebellar ataxia[J]. Neuroscience, 2021, 462: 328-336. |
[33] | DZHAGALOV I, GIGUÈRE V, HE Y W. Lymphocyte development and function in the absence of retinoic acid-related orphan receptor α[J]. J Immunol, 2004, 173(5): 2952-2959. |
[34] | COOK D N, KANG H S, JETTEN A M. Retinoic acid-related orphan receptors (RORs): regulatory functions in Immunity, development, circadian rhythm, and metabolism[J]. Nucl Receptor Res, 2015, 2: 101185. |
[35] | FUJIEDA H, BREMNER R, MEARS A J, et al. Retinoic acid receptor-related orphan receptor α regulates a subset of cone genes during mouse retinal development[J]. J Neurochem, 2009, 108(1): 91-101. |
[36] | CAI Z M, ISHIBASHI T, KOZAI M, et al. ROR agonist hampers the proliferation and survival of postactivated CD8+ T cells through the downregulation of cholesterol synthesis-related genes[J]. Immunol Cell Biol, 2021, 99(3): 288-298. |
[37] | SAYED R K A, MOKHTAR D M, FERNÁNDEZ-ORTIZ M, et al. Retinoid-related orphan nuclear receptor alpha (RORα)-deficient mice display morphological testicular defects[J]. Lab Invest, 2019, 99(12): 1835-1849. |
[38] | SAYED R K A, MOKHTAR D M, FERNÁNDEZ-ORTIZ M, et al. Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging[J]. Aging (Albany NY), 2020, 12(13): 12648-12668. |
[39] | YANG M H, GUAN S Y, TAO J L, et al. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells[J]. Biol Reprod, 2021, 104(6): 1322-1336. |
[40] | FANG Y, ZHANG J L, LI Y H, et al. Melatonin-induced demethylation of antioxidant genes increases antioxidant capacity through RORα in cumulus cells of prepubertal lambs[J]. Free Radic Biol Med, 2019, 131: 173-183. |
[41] | DENG S L, ZHANG Y, YU K, et al. Melatonin up-regulates the expression of the GATA-4 transcription factor and increases testosterone secretion from Leydig cells through RORα signaling in an in vitro goat spermatogonial stem cell differentiation culture system[J]. Oncotarget, 2017, 8(66): 110592-110605. |
[42] | XU Q, HUANG M, WANG X M, et al. TF promotes circadian phase advancement by affecting expressions of liver circadian clock genes[J]. Military Medical Sciences, 2021, 45(1): 1-6. (in Chinese)徐晴, 黄鸣, 王晓明, 等. TF通过影响肝脏生物钟基因表达促进昼夜节律相位前移[J]. 军事医学, 2021, 45(1): 1-6. |
[43] | PANDA S. Circadian physiology of metabolism[J]. Science, 2016, 354(6315): 1008-1015. |
[44] | YANG X Y, DOWNES M, YU R T, et al. Nuclear receptor expression links the circadian clock to metabolism[J]. Cell, 2006, 126(4): 801-810. |
[1] | DONG Shucan, MAO Shuaixiang, WU Cuiying, LI Yaokun, SUN Baoli, GUO Yongqing, DENG Ming, LIU Dewu, LIU Guangbin. The Effect of the Androgen Receptor Inhibitor Enzalutamide on Proliferation and Apoptosis of Goat Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2022-2031. |
[2] | ZHOU Yang, WU Weizi, CAO Weisheng, WANG Fuguang, XU Xiuqiong, ZHONG Wenxia, WU Liyang, YE Jian, LU Shousheng. A Whole Genome Sequencing Method for African Swine Fever Virus based on Nanopore Sequencing Technology was Established [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2080-2089. |
[3] | LI Qiuyun, TIAN Xinyuan, LIAO Wensheng, ZHANG Huanrong, REN Yupeng, YANG Falong, ZHU Jiangjiang, XIANG Hua. Effects of SOCS2 on Proliferation, Cycle and Apoptosis of Turbinate Bone Cells in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2226-2240. |
[4] | LI Pengfei, GAO Guiqin, ZHOU Guangqing, WU Jinyan, YAN Xinmin, CAO Xiaoan, HE Jijun, YUAN Ligang, SHANG Youjun. Establishment and Application of TaqMan Fluorescence Quantitative RT-PCR Detection Method for Enzootic Nasal Tumor Virus of Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2259-2266. |
[5] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[6] | CAO Yuzhu, XING Yuxin, MA Chenglin, GUAN Hongbo, JIA Qihui, KANG Xiangtao, TIAN Yadong, LI Zhuanjian, LIU Xiaojun, LI Hong. Biological Characterization of Chicken FGF6 Gene and Association of Its Polymorphisms with Economic Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1536-1550. |
[7] | YANG Yang, YU Qian, LIU Yucheng, YANG Hua, ZHAO Zhuo, WANG Limin, ZHOU Ping, YANG Qingyong, DAI Rong. Identification and Tissue Expression Analysis of the Sheep MYL Gene Family [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1551-1564. |
[8] | TIAN Rui, XU Sixiang, XIE Feng, LIU Guangjin, WANG Gang, LI Qingxia, DAI Lei, XIE Guoxin, ZHANG Qiongwen, LU Yajing, WANG Guangwen, WANG Jinxiu, ZHANG Wei. Bioinformatics Analysis of the Genome of Clostridium perfringens Isolated from Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1707-1715. |
[9] | KANG Jia, DUAN Xiangru, YIN Xuejiao, YANG Ruochen, LI Taichun, SHAN Xinyu, CHEN Meijing, ZHANG Yingjie, LIU Yueqin. Effects of Cysteine and Methionine on Secondary Hair Follicle Growth and Hair Dermal Papilla Cell Proliferation in vitro in Cashmere Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 515-527. |
[10] | SONG Yan, YUAN Yongfeng, QIAN Hongyu, LI Xincan, LUO Hongyan, WANG Zhiying, ZHOU Zuoyong. Identification and Partial Biological Characteristics Analysis of Corynebacterium pseudotuberculosis Isolated from Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 680-687. |
[11] | YAN Xiaochun, XI Haijiao, LI Jinquan, WANG Zhiying, SU Rui. Study on Estimates of Genomic Breeding Value of Fleece Traits in Inner Mongolia Cashmere Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 120-128. |
[12] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[13] | ZHANG De'an, YANG Ruozhu, LIU Jie, LIU Dewu, DENG Ming, LIU Guangbin, SUN Baoli, GUO Yongqing, LI Yaokun. Expression Analysis of Transcriptome in the Liver of Chuanzhong Black Goats Fed with Silage Neolamarckia Cadamba Substitute for Silage Corn [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 232-244. |
[14] | TANG Yinmei, LI Qi, LI Haiyang, LIN Yaqiu, WANG Yong, XIANG Hua, HUANG Lian, ZHU Jiangjiang. Cloning of the Goat FATP2 Gene and Its Regulatory Effect on Lipid Deposition in Precursor Adipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3642-3652. |
[15] | SHAO Peng, TANG Yinmei, LIN Yaqiu, WANG Yong, XIANG Hua, HUANG Lian, ZHU Jiangjiang. Regulation Effect of PSMD9 on Lipid Deposition in Goat Precursor Adipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3653-3663. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||