[1] ARMAND A S, LAZIZ I, CHANOINE C. FGF6 in myogenesis[J]. Biochim Biophys Acta, 2006, 1763(8):773-778. [2] ZHENG J, JIANG C, LI X K, et al. The progression of fibroblast growth factor 6[J]. China Biotechnology, 2017, 37(4):110-114. (in Chinese) 郑婕, 姜潮, 李校堃, 等. 成纤维细胞生长因子6(FGF6)的研究进展[J]. 中国生物工程杂志, 2017, 37(4):110-114. [3] LI L L. Research progress on the relationship between fibroblast growth factor and choroidal neovascularization[J]. Eye Science, 2020, 35(2):99-105. (in Chinese) 李乐乐. 成纤维细胞生长因子与脉络膜新生血管关系的研究进展[J]. 眼科学报, 2020, 35(2):99-105. [4] ZHI Y L, CAI C K, XU T X, et al. Silencing of FGF6 hampers aerobic glycolysis and angiogenesis in bladder cancer by regulating PI3K/Akt and MAPK signaling pathways[J]. J Biochem Mol Toxicol, 2023, 37(8):e23399. [5] HAN D, ZHAO H, PARADA C, et al. A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development[J]. Development, 2012, 139(9):1640-1650. [6] CAI Q C, WU G B, ZHU M, et al. FGF6 enhances muscle regeneration after nerve injury by relying on ERK1/2 mechanism[J]. Life Sci, 2020, 248:117465. [7] XU B, LIU C Z, ZHANG H, et al. Skeletal muscle-targeted delivery of Fgf6 protects mice from diet-induced obesity and insulin resistance[J]. JCI Insight, 2021, 6(19):e149969. [8] SHAMSI F, XUE R D, HUANG T L, et al. FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis[J]. Nat Commun, 2020, 11(1):1421. [9] LIU C Z, MENG M Y, XU B, et al. Fibroblast growth factor 6 promotes adipocyte progenitor cell proliferation for adipose tissue homeostasis[J]. Diabetes, 2023, 72(4):467-482. [10] HU Z C, CHEN P, WANG L L, et al. FGF6 promotes cardiac repair after myocardial infarction by inhibiting the Hippo pathway[J]. Cell Prolif, 2022, 55(5):e13221. [11] CREIGHTON C J, ZHANG F, ZHANG Y Q, et al. Comparative and integrative analysis of transcriptomic and epigenomic-wide DNA methylation changes in African American prostate cancer[J]. Epigenetics, 2023, 18(1):2180585. [12] KUMAR M, CHAPMAN S C. Cloning and expression analysis of Fgf5, 6 and 7 during early chick development[J]. Gene Expr Patterns, 2012, 12(7/8):245-253. [13] CAO Y Z, JIA Q H, XING Y X, et al. Bioinformatics characteristics and expression regulation of chicken fibroblast growth factor family[J]. Journal of Henan Agricultural University, 2023, 57(3):422-435. (in Chinese) 曹玉珠, 贾其辉, 邢雨欣, 等. 鸡成纤维细胞生长因子家族生物信息学特性及表达调控[J]. 河南农业大学学报, 2023, 57(3):422-435. [14] FU J X, GUO H W, LI C, et al. Polymorphism of exon 7 of DGAT2 gene and its association with growth traits in chicken(Gallus gallus)[J]. Journal of Agricultural Biotechnology, 2016, 24(5):689-696. (in Chinese) 付金秀, 郭红威, 李超, 等. 鸡DGAT2基因第7外显子多态性与生产性能的关联[J]. 农业生物技术学报, 2016, 24(5):689-696. [15] ZHANG Y H, WANG Y Z, LI Y Y, et al. Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F2 chicken population[J]. Heredity (Edinb), 2021, 126(2):293-307. [16] SU L. Study of polymorphisms and gene expression profile of chicken PNPLA3 gene[D]. Zhengzhou:Henan Agricultural University, 2012. (in Chinese) 苏玲. 鸡PNPLA3基因多态性及组织表达规律的研究[D]. 郑州:河南农业大学, 2012. [17] SONG H J, LI W T, LI Y F, et al. Genome-wide association study of 17 serum biochemical indicators in a chicken F2 resource population[J]. BMC Genomics, 2023, 24(1):98. [18] MEI C J. Studies on the corralation between serum biochemical indexes and some fat traits and got isozymes in chickens[D]. Zhengzhou:Henan Agricultural University, 2007. (in Chinese) 梅承君. 鸡血清生化指标与部分脂肪性状相关性及谷草转氨酶同工酶的研究[D]. 郑州:河南农业大学, 2007. [19] LIANG Q J, WANG P C, BAI Y R. Summarization on the progress in protein phosphorylation[J]. Science & Technology Review, 2012, 30(31):73-79. (in Chinese) 梁前进, 王鹏程, 白燕荣. 蛋白质磷酸化修饰研究进展[J]. 科技导报, 2012, 30(31):73-79. [20] TAN T, KE B Y, LIANG Q J. Research progress on protein phosphorylation modification and its role in regulating cell cycle progression[J]. Journal of Beijing Normal University:Natural Science, 1-8.http://kns.cnki.net/kcms/detail/11.1991.n.20230720.1204.002.html. (in Chinese) 谭锬, 柯柏怡, 梁前进. 蛋白质磷酸化修饰及其在细胞周期调控中的作用研究进展[J/OL]. 北京师范大学学报:自然科学版, 1-8.http://kns.cnki.net/kcms/detail/11.1991.n.20230720.1204.002.html. [21] WANG W Q, ZHANG Y W, LI J H, et al. Research progress on the effect of protein phosphorylation on postmortem meat quality[J]. Food Science, 2023, 44(9):221-230. (in Chinese) 王文琪, 张雅玮, 李加慧, 等. 蛋白质磷酸化对宰后肉品质影响研究进展[J]. 食品科学, 2023, 44(9):221-230. [22] JIA Y F, WANG Y M, LI G Y. Recent progress of protein glycosylation characterization utilizing native conformer-resolved mass spectrometry[J/OL]. Journal of China Pharmaceutical University, 1-13.http://kns.cnki.net/kcms/detail/32.1157.r.20230921.1134.004.html. (in Chinese) 贾翼菲, 王雅梅, 李功玉. 蛋白质糖基化修饰的非变性构象分辨质谱研究进展[J/OL]. 中国药科大学学报, 1-13.http://kns.cnki.net/kcms/detail/32.1157.r.20230921.1134.004.html. [23] LI J, DU X, HOSSEINI M S H, et al. The research progress in protein glycosylation modification[J]. Bulletin of Science and Technology, 2009, 25(6):773-778, 783. (in Chinese) 李军, 杜鑫, HOSSEINI M S H, 等. 蛋白质糖基化修饰研究进展[J]. 科技通报, 2009, 25(6):773-778, 783. [24] WANG J H, TONG Y, ZHU Y, et al. The research progress in protein glycosylation[J]. Pharmaceutical Biotechnology, 2011, 18(1):77-80. (in Chinese) 王家红, 童玥, 朱玥, 等. 蛋白质糖基化的研究进展[J]. 药物生物技术, 2011, 18(1):77-80. [25] LI W. Advances in the study of acidic fibroblast factors[J]. Science & Technology Information, 2010(22):493, 496. (in Chinese) 李伟. 酸性成纤维细胞因子的研究进展[J]. 科技信息, 2010(22):493, 496. [26] ZHANG L Q, FU P, YI S F, et al. Role of fibroblast growth factor (FGF) in skeletal muscle development[J]. Animals Breeding and Feed, 2016(1):6-10. (in Chinese) 张力青, 付平, 易四凤, 等. 成纤维细胞生长因子(FGF)在骨骼肌发育中的作用[J]. 养殖与饲料, 2016(1):6-10. [27] ARMAND A S, LAUNAY T, PARISET C, et al. Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice[J]. Biochim Biophys Acta, 2003, 1642(1/2):97-105. [28] HAN J K, MARTIN G R. Embryonic expression of Fgf-6 is restricted to the skeletal muscle lineage[J]. Dev Biol, 1993, 158(2):549-554. [29] YIN T, KÖNIG S. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages[J]. Genet Sel Evol, 2019, 51(1):4. [30] GHOREISHIFAR S M, ERIKSSON S, JOHANSSON A M, et al. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds[J]. Genet Sel Evol, 2020, 52(1):52. [31] WEI Y L, GUO D S, BAI Y B, et al. Transcriptome analysis of mRNA and lncRNA related to muscle growth and development in Gannan yak and jeryak[J]. Int J Mol Sci, 2023, 24(23):16991. [32] LI Q, WANG H H, LU Z K, et al. Association of the PDGF-D gene genetic variation with sheep tail traits[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(4):688-700. (in Chinese) 李青, 王慧华, 卢曾奎, 等. 绵羊PDGF-D基因多态性与尾型的关联[J]. 畜牧兽医学报, 2019, 50(4):688-700. [33] WU S L, WANG Y T, DANG W Y, et al. Genetic diversity analysis of donkey populations in western Liaoning based on SSR molecular markers[J]. The Chinese Livestock and Poultry Breeding, 2023, 19(5):27-32. (in Chinese) 武师良, 王昱彤, 党婉怡, 等. 基于SSR分子标记的辽西地区驴群体遗传多样性分析[J]. 中国畜禽种业, 2023, 19(5):27-32. [34] WANG P G, ZHANG J Q, JIA H C, et al. Development of KASP markers for soybean PRR family genes[J]. Soybean Science, 2023, 42(4):385-395. (in Chinese) 王培国, 张君权, 贾鸿昌, 等. 大豆PRR家族基因KASP标记的开发[J]. 大豆科学, 2023, 42(4):385-395. [35] ZHANG Z C, LIU C, HAO W J, et al. Novel single nucleotide polymorphisms and haplotype of MYF5 gene are associated with body measurements and ultrasound traits in grassland short-tailed sheep[J]. Genes (Basel), 2022, 13(3):483. [36] PENG X W, CHENG J L, LI H, et al. Whole-genome sequencing reveals adaptations of hairy-footed jerboas (Dipus, Dipodidae) to diverse desert environments[J]. BMC Biol, 2023, 21(1):182. [37] PENG Y X, LIU J, ZHAO S Y, et al. Detection of SNPs in porcine RXRB gene and their association analysis with growth, fattening and reproduction traits[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3):596-609. (in Chinese) 彭雅鑫, 刘军, 赵诗瑜, 等. 猪RXRB基因SNPs检测及其与生长育肥和繁殖性状的关联分析[J]. 畜牧兽医学报, 2021, 52(3):596-609. [38] JO B S, CHOI S S. Introns:the functional benefits of introns in genomes[J]. Genomics Inform, 2015, 13(4):112-118. [39] ELIZA L Y Y, YIE S Y, SAY Y H, et al. Deep intronic 9q21.11 polymorphism contributes to atopic dermatitis risk through methylation regulated expression of tight junction protein 2[J]. J Investig Allergol Clin Immunol, 2023.doi:10.18176/jiaci.0978. [40] OROZCO G, HINKS A, EYRE S, et al. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23[J]. Hum Mol Genet, 2009, 18(14):2693-2699. [41] ZHAO P F, HE Z H, XI Q M, et al. Variations in HIF-1α contributed to high altitude hypoxia adaptation via affected oxygen metabolism in tibetan sheep[J]. Animals (Basel), 2021, 12(1):58. [42] DA Y. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers[J]. BMC Genet, 2015, 16:144. [43] YUAN Y M, JIANG H O, KUANG J Y, et al. Genetic variations in ADIPOQ gene are associated with chronic obstructive pulmonary disease[J]. PLoS One, 2012, 7(11):e50848. [44] HU Y L. Study on the methods of genome multi-loci association analysis for complex trait[D]. Shanghai:Shanghai Jiao Tong University, 2009. (in Chinese) 胡艳玲. 复杂性状与基因组多位点的关联分析方法研究[D]. 上海:上海交通大学, 2009. |