Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (6): 1702-1711.doi: 10.11843/j.issn.0366-6964.2022.06.005
• ANIMALGENETICS AND BREEDING • Previous Articles Next Articles
ZHAI Liwei1, ZHAO Yanhui2, LI Wenjun3, XING Kai2*, WANG Chuduan1*
Received:
2021-09-07
Online:
2022-06-23
Published:
2022-06-25
CLC Number:
ZHAI Liwei, ZHAO Yanhui, LI Wenjun, XING Kai, WANG Chuduan. System Analysis of Multi Tissue Transcriptome to Identify Key Genes Affecting Porcine Fat Deposition[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1702-1711.
[1] | ZHANG Y F, ZHANG J J, GONG H F, et al. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations[J]. Meat Sci, 2019, 150: 47-55. |
[2] | AJUWON K M. The pig model for the study of obesity and associated metabolic diseases[M]//SCANES C G, HILL R A. Biology of Domestic Animals. Boca Raton: CRC Press, 2017: 18-47. |
[3] | BERNLOHR D A, JENKINS A E, BENNAARS A A. Adipose tissue and lipid metabolism[J]. New Compr Biochem, 2002, 36: 263-289. |
[4] | GLEESON M. Basic metabolism I: fat[J]. Surgery (Oxford), 2005, 23(3): 83-88. |
[5] | POKLUKAR K, ČANDEK-POTOKAR M, LUKAČN B, et al. Lipid deposition and metabolism in local and modern pig breeds: a review[J]. Animals (Basel), 2020, 10(3): 424. |
[6] | PONZIANI F R, PECERE S, GASBARRINI A, et al. Physiology and pathophysiology of liver lipid metabolism[J]. Expert Rev Gastroenterol Hepatol, 2015, 9(8): 1055-1067. |
[7] | RUIZ J, CAVA R, ANTEQUERA T, et al. Prediction of the feeding background of Iberian pigs using the fatty acid profile of subcutaneous, muscle and hepatic fat[J]. Meat Sci, 1998, 49(2): 155-163. |
[8] | STARK R, GRZELAK M, HADFIELD J. RNA sequencing: the teenage years[J]. Nat Rev Genet, 2019, 20(11): 631-656. |
[9] | XING K, ZHU F, ZHAI L W, et al. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition[J]. PLoS One, 2015, 10(4): e0122396. |
[10] | ZHANG M, SUN H H, FEI Z J, et al. Fastq_clean: an optimized pipeline to clean the Illumina sequencing data with quality control[C]//Proceedings of 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Belfast: IEEE, 2015: 44-48. |
[11] | TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7(3): 562-578. |
[12] | LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. |
[13] | SABINO M, CARMELO V A O, MAZZONI G, et al. Gene co-expression networks in liver and muscle transcriptome reveal sex-specific gene expression in lambs fed with a mix of essential oils[J]. BMC Genomics, 2018, 19(1): 236. |
[14] | HUANG D W, SHERMAN B T, LEMPICKI R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res, 2009, 37(1): 1-13. |
[15] | REITER S S, HALSEY C H C, STRONACH B M, et al. Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain Pigs[J]. Comp Biochem Physiol Part D Genomics Proteomics, 2007, 2(3): 200-206. |
[16] | VILLAPLANA-VELASCO A, NOGUERA J L, PENA R N, et al. Comparative transcriptome profile between Iberian pig varieties provides new insights into their distinct fat deposition and fatty acids content[J]. Animals (Basel), 2021, 11(3): 627. |
[17] | WU W J, ZHANG Z K, CHAO Z, et al. Transcriptome analysis reveals the genetic basis of skeletal muscle glycolytic potential based on a pig model[J]. Gene, 2021, 766: 145157. |
[18] | WANG Y L, ZHANG W, WU X D, et al. Transcriptomic comparison of liver tissue between Anqing six-end-white pigs and Yorkshire pigs based on RNA sequencing[J]. Genome, 2020, 63(4): 203-214. |
[19] | BUYSE J, DECUYPERE E. Chapter 19-adipose tissue and lipid metabolism[M]//SCANES C G. Sturkie's Avian Physiology. 6th ed. Amsterdam: Elsevier, 2015: 443-453. |
[20] | STACHOWIAK M, FLISIKOWSKI K. Analysis of allele-specific expression of seven candidate genes involved in lipid metabolism in pig skeletal muscle and fat tissues reveals allelic imbalance of ACACA, LEP, SCD, and TNF[J]. J Appl Genet, 2019, 60(1): 97-101. |
[21] | PATON C M, NTAMBI J M. Biochemical and physiological function of stearoyl-CoA desaturase[J]. Am J Physiol Endocrinol Metab, 2009, 297(1): E28-E37. |
[22] | FENG X J, ZHANG L, XU S W, et al. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review[J]. Prog Lipid Res, 2020, 77: 101006. |
[23] | PALMA-GRANADOS P, SEIQUER I, BENÍTEZ R, et al. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets[J]. Animal, 2019, 13(10): 2406-2418. |
[24] | REN Z Q, WANG Y, XU Y J, et al. Identification of a differentially expressed gene, ACL, between Meishan×Large White and Large White×Meishan F1 hybrids and their parents[J]. Genet Sel Evol, 2008, 40(6): 625-637. |
[25] | SMITH S B, MERSMANN H J, SMITH E O, et al. Stearoyl-coenzyme A desaturase gene expression during growth in adipose tissue from obese and crossbred pigs[J]. J Anim Sci, 1999, 77(7): 1710-1716. |
[26] | SUN C, LIU C W, ZHANG Z P. Cloning of OLR1 gene in pig adipose tissue and preliminary study on its lipid-accumulating effect[J]. Asian-Aust J Anim Sci, 2009, 22(10): 1420-1428. |
[27] | CHUI P C, GUAN H P, LEHRKE M, et al. PPARγ regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1[J]. J Clin Invest, 2005, 115(8): 2244-2256. |
[28] | SHI L, LIU L, MA Z, et al. Identification of genetic associations of ECHS1 gene with milk fatty acid traits in dairy cattle[J]. Anim Genet, 2019, 50(5): 430-438. |
[29] | CHINETTI G, FRUCHART J C, STAELS B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation[J]. Inflamm Res, 2000, 49(10): 497-505. |
[30] | BARB C R, HAUSMAN G J, HOUSEKNECHT K L. Biology of leptin in the pig[J]. Domest Anim Endocrinol, 2001, 21(4): 297-317. |
[31] | PUCCINELLI E, GERVASI P G, LONGO V. Xenobiotic metabolizing cytochrome P450 in Pig, a promising animal model[J]. Curr Drug Metab, 2011, 12(6): 507-525. |
[32] | COROMINAS J, RAMAYO-CALDAS Y, PUIG-OLIVERAS A, et al. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition[J]. BMC Genomics, 2013, 14: 843. |
[33] | WONG R H F, SUL H S. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective[J]. Curr Opin Pharmacol, 2010, 10(6): 684-691. |
[34] | XING K, ZHU F, ZHAI L W, et al. The liver transcriptome of two full-sibling Songliao black pigs with extreme differences in backfat thickness[J]. J Anim Sci Biotechnol, 2014, 5(1): 32. |
[35] | O'HEA E K, LEVEILLE G A. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis[J]. J Nutr, 1969, 99(3): 338-344. |
[36] | XU X F, ZHANG M F, XU F Y, et al. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities[J]. Mol Cancer, 2020, 19(1): 165. |
[1] | CHEN Zhe, QU Xiaolu, GUO Binbin, SUN Xuefeng, YAN Leyan. Study on Candidate Genes for Green Light Affecting Early Development of Goose Embryo Heart Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1978-1988. |
[2] | XU Junjie, ZHANG Lutong, WANG Jinjie, CHEN Xiaochen, HE Weixian, CAI Chuanjiang, CHU Guiyan, YANG Gongshe. Exploring the Effect of Epimedium on Estrus of Gilts Based on Multiomics and Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1615-1628. |
[3] | LIANG Shuyi, LI Fan, JIANG Qingyan, WANG Songbo. Regulation and Mechanism of Proline Hydroxylases(PHDs) on Skeletal Muscle Development and Fat Deposition in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 867-873. |
[4] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[5] | GAO Yawei, PENG Di, SUN Zhaoyang, YAN Ziyue, CUI Kai, MA Zefang. Mining the Molecular Mechanism of Exogenous Melatonin Affecting the Development of Mink Ovary Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 607-618. |
[6] | LIU Yili, TANG Jiao, MIN Qi, YANG Lu, WANG Zening, HU Lian, ZHAO Di, JIANG Mingfeng. Mining Key Candidate Genes of Development and Metabolism in Yak Abomasum Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 153-168. |
[7] | HAN Haozhe, TIE Zihang, PANG Weijun, CAI Rui. Advances of IGF2BP2-Mediated m6A Modification on Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3605-3612. |
[8] | HU Ting, ZHANG Yonghong, HOU Xiaolin, YAO Hua, CUI Defeng, PAN Zaozao, ZHANG Lingyu, ZHANG Jiaxi, WU Qiong. The Effects of Bisphenol A on Inflammation and Amino Acid Metabolism Pathways in Porcine Testis Sertoli Cells Based on Transcriptome Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2858-2871. |
[9] | LIU Hang, WANG Huanhuan, GE Ying, ZHANG Lei, ZHANG Weiwu, WEI Yinghui, LI Qinghai, FAN Jinghui, ZHANG Xuedong. Screening of Candidate Genes of Skin Color of Black-Bone Chicken Based on Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2320-2329. |
[10] | BAI Lu, WANG Mengjie, MA Xiaochun, HE Zhengxiao, KONG Fuli, LIU Dawei, YING Fan, ZHU Dan, ZHAO Guiping, WEN Jie, LIU Ranran. Study of the Alteration of Wooden Breast Histological and Molecular Regulatory Pathways in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1915-1926. |
[11] | WANG Meihui, ZHONG Zhenyu, BAI Jiade, SHAN Yunfang, CHENG Zhibin, ZHANG Qingxun, MENG Yuping, DONG Yulan, GUO Qingyun. Transcriptomic Analysis of Key Genes and Pathways in Deer Gut Infected by Clostridium perfringens Type C [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2147-2157. |
[12] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[13] | SUN Meijie, CAO Liwen, ZHENG Wenjin, SHEN Junshi, ZHU Weiyun. Effect of Dietary Urea Supplementation on Liver Ammonia Metabolism in Fattening Hu Lambs Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1148-1159. |
[14] | LIU Yuanyi, LI Xinyu, Bayinnamula, CUI Fang, MANG Lai, DU Ming. Single-Cell Transcriptome Sequencing Technology and its Application in Animal Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 421-433. |
[15] | WANG Lin, MA Li, ZHANG Bo, DENG Jun, ZHANG Hao, OUYANG Xiaofang, YAN Dawei, DONG Xinxing. Key Genes and Regulatory Network Analysis of Lipid Metabolism Differences between Back Fat and Abdominal Fat of Large Diqing Tibetan Pigs at Different Growth Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 520-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||