Acta Veterinaria et Zootechnica Sinica ›› 2021, Vol. 52 ›› Issue (11): 3215-3223.doi: 10.11843/j.issn.0366-6964.2021.011.023
• BASIC VETERINARY MEDICINE • Previous Articles Next Articles
TANG Mengyao, MA Yijie, TIAN Shimao, WAN Qianhui, YANG Guihong*
Received:
2021-05-20
Online:
2021-11-23
Published:
2021-11-24
CLC Number:
TANG Mengyao, MA Yijie, TIAN Shimao, WAN Qianhui, YANG Guihong. The Signaling Pathway of Neuromedin B and Its Receptor NMBR Involvement in Anti-influenza A Virus H1N1 Subtype Infection[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3215-3223.
[1] | MEDINA R A, GARCÍA-SASTRE A. Influenza A viruses:new research developments[J]. Nat Revi Microbiol, 2011, 9(8):590-603. |
[2] | DAI M L, DU W J, MARTÍNEZ-ROMERO C, et al. Analysis of the evolution of pandemic influenza A(H1N1) virus neuraminidase reveals entanglement of different phenotypic characteristics[J]. mBio, 2021, 12(3):e00287-21. |
[3] | JIMENEZ-BLUHM P, SEPULVEDA A, BAUMB-ERGER C, et al. Evidence of influenza infection in dogs and cats in central Chile[J]. Prev Vet Med, 2021, 191:105349. |
[4] | ZHANG X H, LI Y G, JIN S, et al. PB1 S524G mutation of wild bird-origin H3N8 influenza A virus enhances virulence and fitness for transmission in mammals[J]. Emerg Microbes Infect, 2021, 10(1):1038-1051. |
[5] | SALVESEN H A, WHITELAW C B A. Current and prospective control strategies of influenza A virus in swine[J]. Porcine Health Manag, 2021, 7(1):23. |
[6] | ASANO Y, MIZUMOTO K, MARUYAMA T, et al. Photoaffinity labeling of influenza virus RNA polymerase PB1 subunit with 8-azido GTP[J]. J Biochem, 1995, 117(3):677-682. |
[7] | LI X L, GU M, ZHENG Q M, et al. Packaging signal of influenza A virus[J]. Virol J, 2021, 18(1):36. |
[8] | VASIN A V, TEMKINA O A, EGOROV V V, et al. Molecular mechanisms enhancing the proteome of influenza A viruses:an overview of recently discovered proteins[J]. Virus Res, 2014, 185:53-63. |
[9] | PÉREZ-RUBIO G, PONCE-GALLEGOS M A, DOMÍNGUEZ-MAZZOCCO B A, et al. Role of the host genetic susceptibility to 2009 pandemic influenza A H1N1[J]. Viruses, 2021, 13(2):344. |
[10] | GANTI K, BAGGA A, DASILVA J, et al. Avian influenza A viruses reassort and diversify differently in mallards and mammals[J]. Viruses, 2021, 13(3):509. |
[11] | YIN X, DENG G H, ZENG X Y, et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China[J]. PLoS Pathog, 2021, 17(4):e1009561. |
[12] | CHANG P X, SEALY J E, SADEYEN J R, et al. Immune escape adaptive mutations in the H7N9 avian influenza hemagglutinin protein increase virus replication fitness and decrease pandemic potential[J]. J Virol, 2020, 94(19):e00216-20. |
[13] | HUANG S W, WANG S F. The effects of genetic variation on H7N9 avian influenza virus pathogenicity[J]. Viruses, 2020, 12(11):1220. |
[14] | LANZ C, SCHOTSAERT M, MAGNUS C, et al. IFITM3 incorporation sensitizes influenza A virus to antibody-mediated neutralization[J]. J Exp Med, 2021, 218(6):e20200303. |
[15] | NENASHEVA V V, NIKITENKO N A, STEPANENKO E A, et al. Human TRIM14 protects transgenic mice from influenza A viral infection without activation of other innate immunity pathways[J]. Genes Immun, 2021, 22(1):56-63. |
[16] | WANG Y C, ZHANG X J, BI K F, et al. Critical role of microRNAs in host and influenza A (H1N1) virus interactions[J]. Life Sci, 2021, 277:119484. |
[17] | WU J, GU J Q, SHEN L, et al. The role of host cell Rab GTPases in influenza A virus infections[J]. Future Microbiol, 2021, 16(6):445-452. |
[18] | KAMEDA H, MIYOSHI H, SHIMIZU C, et al. Expression and regulation of neuromedin B in pituitary corticotrophs of male melanocortin 2 receptor-deficient mice[J]. Endocrinology, 2014, 155(7):2492-2499. |
[19] | DEMAS G E, ADAMO S A, FRENCH S S. Neuroendocrine-immune crosstalk in vertebrates and invertebrates:Implications for host defence[J]. Funct Ecol, 2011, 25(1):29-39. |
[20] | DELGADO M, VARELA N, GONZALEZ-REY E. Vasoactive intestinal peptide protects against β-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels[J]. GLIA, 2008, 56(10):1091-1103. |
[21] | GONZALEZ-REY E, DELGADO M. Anti-inflammatory neuropeptide receptors:new therapeutic targets for immune disorders?[J]. Trends Pharmacol Sci, 2007, 28(9):482-491. |
[22] | JENSEN R T, BATTEY J F, SPINDEL E R, et al. International union of pharmacology. LXVⅢ. Mammalian bombesin receptors:nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states[J]. Pharmacol Rev, 2008, 60(1):1-42. |
[23] | MINAMINO N, KANGAWA K, MATSUO H. Neuromedin B:a novel bombesin-like peptide identified in porcine spinal cord[J]. Biochem Biophys Res Commun, 1983, 114(2):541-548. |
[24] | MINAMINO N, SUDOH T, KANGAWA K, et al. Neuromedin B-32 and B-30:two"big"neuromedin B identified in porcine brain and spinal cord[J]. Biochem Biophys Res Commun, 1985, 130(2):685-691. |
[25] | SAYEGH A I. The role of bombesin and bombesin-related peptides in the short-term control of food intake[J]. Prog Mol Biol Trans Sci, 2013, 114:343-370. |
[26] | SU P Y, KO M C. The role of central gastrin-releasing peptide and neuromedin B receptors in the modulation of scratching behavior in rats[J]. J Pharmacol Exp Ther, 2011, 337(3):822-829. |
[27] | MISHRA S K, HOLZMAN S, HOON M A. A nociceptive signaling role for neuromedin B[J]. J Neurosci, 2012, 32(25):8686-8695. |
[28] | BOUGHTON C K, PATEL S A, THOMPSON E L, et al. Neuromedin B stimulates the hypothalamic-pituitary-gonadal axis in male rats[J]. Regul Pept, 2013, 187:6-11. |
[29] | GAJJAR S, PATEL B M. Neuromedin:An insight into its types, receptors and therapeutic opportunities[J]. Pharmacol Rep, 2017, 69(3):438-447. |
[30] | MA Z Y, ZHANG Y, SU J, et al. Effects of neuromedin B on steroidogenesis, cell proliferation and apoptosis in porcine Leydig cells[J]. J Mol Endocrinol, 2018, 61(1):13-23. |
[31] | YANG G H, HUANG H P, TANG M Y, et al. Role of neuromedin B and its receptor in the innate immune responses against influenza A virus infection in vitro and in vivo[J]. Vet Res, 2019, 50(1):80. |
[32] | MULERO M C, HUXFORD T, GHOSH G. NF-κB, IκB, and IKK:Integral components of immune system signaling[J]. Adv Exp Med Biol 2019, 1172:207-226. |
[33] | MITCHELL J P, CARMODY R J. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol, 2018, 335:41-84. |
[34] | CHEN J F, SHI Y, HUANG J R, et al. Neuromedin B receptor mediates neuromedin B-induced COX-2 and IL-6 expression in human primary myometrial cells[J]. J Investig Med, 2020, 68(6):1171-1178. |
[35] | JAYAKUMAR T, HOU S M, CHANG C C, et al. Columbianadin dampens in vitro inflammatory actions and inhibits liver injury via inhibition of NF-κB/MAPKs:Impacts on ·OH Radicals and HO-1 Expression[J]. Antioxidants (Basel), 2021, 10(4):553. |
[36] | DE CASTRO BARBOSA M L, DA CONCEICAO R A, FRAGA A G M, et al. NF-κB signaling pathway inhibitors as anticancer drug candidates[J]. Anticancer Agents Med Chem, 2017, 17(4):483-490. |
[37] | DURAND J K, BALDWIN A S. Targeting IKK and NF-κB for therapy[J]. Adv Protein Chem Struct Biol, 2017, 107:77-115. |
[38] | ESTARAS M, GONZALEZ-PORTILLO M R, MARTINEZ R, et al. Melatonin modulates the antioxidant defenses and the expression of proinflammatory mediators in pancreatic stellate cells subjected to hypoxia[J]. Antioxidants (Basel), 2021, 10(4):577. |
[39] | DENG S, GU B, YU Z, et al. MIR210HG aggravates sepsis-induced inflammatory response of proximal tubular epithelial cell via the NF-κB signaling pathway[J]. Yonsei Med J, 2021, 62(5):461-469. |
[1] | SU Yiman, YE Jiali, QIU Wenyue, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, TANG Zhaoxin, SU Rongsheng. Asiatic Acid Alleviates LPS-induced Pyroptosis in Renal Cell by Inhibiting HMGB1/TLR4/NF-κB Pathway in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1777-1786. |
[2] | DAI Fan, LIU Zhanyou, ZHANG Xuyang, LI Wu. Aconitate Decarboxylase 1 Could Regulate the Inflammatory Response Caused by BCG [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1696-1706. |
[3] | CHEN Xihong, LU Guicong, WANG Haolei, GOU Shaoxiao, YU Yongxiong, LIN Tao, JIANG Caode. Isochlorogenic Acid C Inhibits Mammary Inflammatory Response through NF-κB Signaling Pathway Using Bovine Mammary Gland Cells and Mouse Mammary Gland Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3931-3940. |
[4] | LIU Wenhao, ZHU Yance, ZHANG Dongxuan, WANG Zhihao, ZHANG Chao. Construction of PK 15 Cell Line Stably Expressing African Swine Fever Virus E165R Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2662-2666. |
[5] | REN Xiujuan, KANG Decuo, SU Shaofeng, LIN Yanan, LI Yajing, DU Ming, BAI Dongyi, LI Bei, ZHAO Yiping, DUGARJAVIIN Manglai. Comparison of Immune Gene Expression between Mongolian Horse and Thoroughbred [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5020-5032. |
[6] | ZHANG Na, WANG Fei, GE Ximin, ZHAO Guiping, WEN Jie, LI Qinghe. Correlation between the Expression Level of USP7 and the Immune Response to Salmonella Infection in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2396-2402. |
[7] | JI Yanju, ZHONG Gaolong, CHANG Xiaoyue, LI Ying, HU Lianmei, ZHANG Hui, PAN Jiaqiang, TANG Zhaoxin. Echinacea Enhances the Immune Function of Immunosuppressed Chicken by Regulating TLR4-NF-κB Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2354-2363. |
[8] | WU Yinghuan, YANG Danru, ZHAO Yanying. Bovine Allograft Inflammatory Factor-1 (AIF-1) Induces Inflammatory Mediator Secretion from Bovine Mammary Epithelial Cells via NF-κB Signaling [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 782-788. |
[9] | ZHU Daoxian, WU Zhi, LU Jiang, HUANG Tao, LIU Li. Gut Bacteria of Gout Gosling Promoted Kidney Injury Through LTR4/MyD88/NF-κB Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 543-552. |
[10] | SONG Bing, GU Jixiu, WANG Yongfeng, ZHANG Yanying, YU Sijiu. Mechanism of Dahuang Mudan Decoction Regulating HMGB1/RAGE/NF-κB Signaling Pathway in Rats with Acute Pancreatitis [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3260-3269. |
[11] | LI Yuhang, LUORENG Zhuoma, WANG Xingping, YANG Jian, MA Yun, WEI Dawei. Molecular Regulatory Mechanism of NF-κB Signaling Pathway Regulating Mastitis in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2740-2752. |
[12] | WANG Yimeng, LIU Xuejiao, WANG Qian, WEI Qing, DOU Caixia, SHANG Zhiyuan, QIAO Jiayun, LI Haihua. Molecular Mechanism of the Injury of IPEC-J2 Caused by Salmonella via NF-κB/β-catenin Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 235-245. |
[13] | ZHANG Yu, XU Zijie, HUANG Xiaoyu, XING Xiaonan, ZHANG Xiaoqiang, ZHAO Leiyun, ZHANG Enping. Regulatory Effect of Resveratrol on Inflammatory Response Induced by Heat Stress in Goat Small Intestinal Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1886-1894. |
[14] | LUO Yichen, YANG Qingchang, LIN Chunfa, YE Ruiling, SHANG Yangfei, HU Yu, LIU Juan. The Effect of Shenfukang Granule on Content of Inflammatory Cytokines and the Signaling Pathway of IL-1R/NF-κB Induced by the Artificial Pathological Model of Chicken Kidney Swelling [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11): 2886-2894. |
[15] | BAI Yu;ZHOU Xiang-mei;YIN Xiao-min;YANG Jian-min;ZHAO De-ming. NF-κB Activated in PrP106-126-induced Neurotoxicity in Mouse Neuroblastoma Cells N2a [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2009, 40(4): 544-547. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||