

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (11): 5389-5401.doi: 10.11843/j.issn.0366-6964.2025.11.005
葛圣鑫1(
), 李树文1,2, 宁文晴1,3, 丁家波1,*(
), 杨晓雯1,*(
)
收稿日期:2025-02-13
出版日期:2025-11-23
发布日期:2025-11-27
通讯作者:
丁家波,杨晓雯
E-mail:2604561725@qq.com;dingjiabo@126.com;yangxiaowen01@caas.cn
作者简介:葛圣鑫(2001-),男,河南驻马店人,硕士生,主要从事人兽共患病防控、耐药及致病机制研究,E-mail: 2604561725@qq.com
基金资助:
GE Shengxin1(
), LI Shuwen1,2, NING Wenqing1,3, DING Jiabo1,*(
), YANG Xiaowen1,*(
)
Received:2025-02-13
Online:2025-11-23
Published:2025-11-27
Contact:
DING Jiabo, YANG Xiaowen
E-mail:2604561725@qq.com;dingjiabo@126.com;yangxiaowen01@caas.cn
摘要:
布鲁氏菌是引起人畜共患的布鲁氏菌病的病原菌,布鲁氏菌病是威胁我国公共卫生安全的重要疾病之一,我国每年因布鲁氏菌病造成的直接和间接经济损失高达数十亿美元。根据世界动物卫生组织和世界动物卫生信息系统统计的数据显示,除西欧、北美部分地区、澳大利亚之外,其他地区布鲁氏菌病流行情况仍然较为严峻。布鲁氏菌病的临床治疗一直以抗生素疗法为主,近年来的研究表明布鲁氏菌对临床常用的抗生素有明显的耐药趋势,给临床治疗带来了挑战。本文主要通过对2004—2024年进行的布鲁氏菌耐药性研究进行综述,分析布鲁氏菌的耐药现状和机制,为布鲁氏菌病的防控提供参考,减少因耐药导致慢性布病造成的直接和间接损失。
中图分类号:
葛圣鑫, 李树文, 宁文晴, 丁家波, 杨晓雯. 布鲁氏菌耐药性现状及其机制研究进展[J]. 畜牧兽医学报, 2025, 56(11): 5389-5401.
GE Shengxin, LI Shuwen, NING Wenqing, DING Jiabo, YANG Xiaowen. Current Situation and Mechanism of Antibiotic Resistance of Brucella[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5389-5401.
表 1
世界各地布鲁氏菌耐药性"
| 地区 Region | 发表年份 Publication year | 菌株年份 Strain year | 方法 Method | 菌株种类 Strain type | 抗生素耐药率 Antibiotic resistance rate |
| 伊朗 哈马丹[ | 2017 | 2015-2016 | E-test | 羊种布鲁氏菌 | 利福平(35.10%)、复方新诺明(3.500%) |
| 土耳其[ | 2013 | 2006-2011 | 琼脂稀释法 | 羊种布鲁氏菌 | 链霉素(7.300%)、环丙沙星(7.300%)、庆大霉素(7.300%)、利福平(9.700%)、复方新诺明(46.30%) |
| 沙特阿拉伯[ | 2022 | 2021 | 纸片扩散法 | 羊种布鲁氏菌 | 复方新诺明(36.36%)、利福平(31.28%)、氨苄西林—舒巴坦(27.27%)、氨苄青霉素(22.70%) |
| 牛种布鲁氏菌 | 复方新诺明(32.14%)、利福平(35.71%)、氨苄西林—舒巴坦(28.57%)、氨苄青霉素(32.14%) | ||||
| 卡塔尔[ | 2015 | 2014-2015 | E-test | 羊种布鲁氏菌 | 利福平(48.00%) |
| 埃及[ | 2019 | — | E-test | 羊种布鲁氏菌 | 环丙沙星(76.19%)、红霉素(19.04%)、亚胺培南(76.19%)、利福平(66.66%)、链霉素(4.760%) |
| 牛种布鲁氏菌 | 环丙沙星(25.00%)、红霉素(87.50%)、亚胺培南(25.00%)、利福平(37.50%) | ||||
| 哈萨克斯坦[ | 2017 | 2008-2014 | E-test | 羊种布鲁氏菌 | 庆大霉素(2.700%)、利福平(26.40%) |
| 印度[ | 2024 | 2006-2023 | E-test | 羊种布鲁氏菌 | 多西环素(20.80%);环丙沙星(16.67%);复方新诺明(4.170%);利福平(16.67%) |
| 挪威[ | 2018 | 1999-2016 | 微量稀释法、E-test | 羊种布鲁氏菌 | 只检测到利福平耐药菌株 |
| 波黑[ | 2022 | 2018 | 琼脂稀释法 | 羊种布鲁氏菌 | 84.30%的菌株对复方新诺明在BB中耐药,在CAMHB中不耐药;90.00%以上的菌株对阿奇霉素在BB和CAMHB中都具有耐药性 |
| 中国内蒙古[ | 2024 | 2022-2023 | E-test | 羊种布鲁氏菌 | 阿奇霉素(100.0%)、头孢曲松(20.68%)、利福平(6.890%) |
| 中国东北地区[ | 2023 | 2020 | E-test | 羊种布鲁氏菌 | 利福平(24.60%)、阿奇霉素(86.90%)、头孢吡肟(65.60%)、头孢哌酮/舒巴坦(27.90%)、头孢噻肟(3.300%)、美吡利啶/磺胺甲恶唑(1.600%) |
| 中国新疆[ | 2024 | — | 实时PCR,Tis双探针检测法、微量稀释法 | 羊种布鲁氏菌 | 检测到6株利福平中等耐药布鲁氏菌,无阿米卡星耐药菌株 |
| 中国河南[ | 2024 | 2013-2022 | 肉汤稀释法 | 羊种布鲁氏菌 | 环丙沙星耐药率2.800%,复方新诺明耐药率30.60%,氨苄西林耐药率94.40% |
| 中国青海[ | 2024 | 2015-2020 | 微量稀释法 | 羊种布鲁氏菌 | 检测到1株阿奇霉素耐药菌株 |
| 中国云南省玉溪市[ | 2017 | 2014-2016 | 纸片扩散法 | — | 头孢噻肟、头孢吡肟、亚胺培南、多西环素、头孢哌酮、米诺环素、妥布霉素、利福平、头孢哌酮/舒巴坦、氯霉素耐药率≤10.00%,氨曲南87.80%,氨苄西林41.46% |
| 1 | 隋鹏飞,党冰.牛羊布鲁氏菌病症状及防治措施[J].世界热带农业信息,2022(10):78-79. |
| SUIP F,DANGB.Symptoms and control measures of brucellosis in cattle and sheep[J].World Tropical Agriculture Information,2022(10):78-79. | |
| 2 | 李金岭.布鲁氏菌病的流行特点、症状及危害[J].兽医导刊,2010(3):32-32. |
| LIJ L.Epidemic characteristics, symptoms and hazards of brucellosis[J].Veterinary Orientation,2010(3):32-32. | |
| 3 |
HARRISONE R,POSADAR.Brucellosis[J].Pediatr Rev,2018,39(4):222-224.
doi: 10.1542/pir.2017-0126 |
| 4 | 张文宏,张跃新.布鲁菌病诊疗专家共识[J].中华传染病杂志,2017,35(12):6. |
| ZHANGW H,ZHANGY X.Expert consensus on diagnosis and treatment of brucellosis[J].Chinese Journal of Infectious Diseases,2017,35(12):6. | |
| 5 |
AYOUBH,KUMARM S,MEHTAR,et al.Exploring genetic determinants of antimicrobial resistance in Brucella melitensis strains of human and animal origin from India[J].Front Microbiol,2024,15,1474957.
doi: 10.3389/fmicb.2024.1474957 |
| 6 |
JOHANSENT B,SCHEFFERL,JENSENV K,et al.Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective[J].Sci Rep,2018,8(1):8538.
doi: 10.1038/s41598-018-26906-3 |
| 7 |
KHANA U,SHELLW S,MELZERF,et al.Identification, genotyping and antimicrobial susceptibility testing of Brucella spp. isolated from livestock in Egypt[J].Microorganisms,2019,7(12):603.
doi: 10.3390/microorganisms7120603 |
| 8 |
MARTINF A,POSADASD M,CARRICAM C,et al.Interplay between two RND systems mediating antimicrobial resistance in Brucella suis[J].J Bacteriol,2009,191(8):2530-2540.
doi: 10.1128/JB.01198-08 |
| 9 |
TORKAMAN ASADIF,HASHEMIS H,ALIKHANIM Y,et al.Clinical and diagnostic aspects of brucellosis and antimicrobial susceptibility of Brucella isolates in Hamedan, Iran[J].Jpn J Infect Dis,2017,70(3):235-238.
doi: 10.7883/yoken.JJID.2016.133 |
| 10 | ALAMIANS,DADARM,ETEMADIA,et al.Antimicrobial susceptibility of Brucella spp. isolated from Iranian patients during 2016 to 2018[J].Iran J Microbiol,2019,11(5):363-367. |
| 11 |
SHEVTSOVA,SYZDYKOVM,KUZNETSOVA,et al.Antimicrobial susceptibility of Brucella melitensis in Kazakhstan[J].Antimicrob Resist Infect Control,2017,6,130.
doi: 10.1186/s13756-017-0293-x |
| 12 |
ELBEHIRYA,ALDUBAIBM,AL RUGAIEO,et al.Proteomics-based screening and antibiotic resistance assessment of clinical and sub-clinical Brucella species: An evolution of brucellosis infection control[J].PLoS One,2022,17(1):e0262551.
doi: 10.1371/journal.pone.0262551 |
| 13 |
ILHANZ,SOLMAZH,EKINI H.In vitro antimicrobial susceptibility of Brucella melitensis isolates from sheep in an area endemic for human brucellosis in Turkey[J].J Vet Med Sci,2013,75(8):1035-1040.
doi: 10.1292/jvms.12-0163 |
| 14 |
MANAFER P,BHEMBE-MAGADAZAN L,GREENE.Antibiogram screening and detection of virulence-associated genes in Brucella Species acquired from cattle in South Africa's Eastern Cape Province[J].Int J Environ Res Public Health,2022,19(5):2813.
doi: 10.3390/ijerph19052813 |
| 15 |
DJOKICV,FREDDIL,DE MASSISF,et al.The emergence of Brucella canis as a public health threat in Europe: what we know and what we need to learn[J].Emerg Microbes Infect,2023,12(2):2249126.
doi: 10.1080/22221751.2023.2249126 |
| 16 | 梁英风,吴金英,刘岩,等.62株临床分离布鲁氏菌对四种常用抗生素药物敏感性实验[J].现代检验医学杂志,2020,35(4):116-117, 129. |
| LIANGY F,WUJ Y,LIUY,et al.Sensitivity test of 62 strains of brucella isolated from clinical to four common antibiotics[J].Journal of Modern Laboratory Medicine,2020,35(04):116-117, 129. | |
| 17 | 杨晓雯,姜霞,安翠红,等.羊种布鲁氏菌分离株体外抗生素敏感性研究[J].疾病监测,2021,36(12):5. |
| YANGX W,JIANGX,ANC H,et al.Sensitivity of Brucella melitensis isolates to antibioticsin vitro[J].Disease Surveillance,2021,36(12):5. | |
| 18 |
LIUZ G,DID D,WANGM,et al.In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Ulanqab of Inner Mongolia, China[J].BMC Infect Dis,2018,18(1):43.
doi: 10.1186/s12879-018-2947-6 |
| 19 |
YUANH T,WANGC L,LIUL N,et al.Epidemiologically characteristics of human brucellosis and antimicrobial susceptibility pattern of Brucella melitensis in Hinggan League of the Inner Mongolia Autonomous Region, China[J].Infect Dis Poverty,2020,9(1):79.
doi: 10.1186/s40249-020-00697-0 |
| 20 | 左柯铭,塔娜,高静,等.2022-2023年内蒙古自治区羊种布鲁氏菌多位点序列分型与体外抗生素敏感性试验[J].疾病监测,2024,39(6):761-765. |
| ZUOK M,TAN,GAOJ,et al.Multilocus sequence typing and in vitro antibiotic susceptibility testing of Brucella melitensis isolated in the Inner Mongolia Autonomous Region, 2022-2023[J].Disease Surveillance,2024,39(6):761-765. | |
| 21 |
MAH R,XUH J,WANGX,et al.Molecular characterization and antimicrobial susceptibility of human Brucella in Northeast China[J].Front Microbiol,2023,14,1137932.
doi: 10.3389/fmicb.2023.1137932 |
| 22 |
JIANGH,MAOL L,ZHAOH Y,et al.MLVA typing and antibiotic susceptibility of Brucella human isolates from Liaoning, China[J].Trans R Soc Trop Med Hyg,2010,104(12):796-800.
doi: 10.1016/j.trstmh.2010.08.002 |
| 23 | 马涵睿. 布鲁氏菌分离株耐药性及耐药机制的研究[D]. 长春: 东北师范大学, 2023. |
| MA H R. Study of antibiotic resistance and resistancemechanisms of Brucella isolates[D]. Changchun: Northeast Normal University, 2023. (in Chinese) | |
| 24 |
YANGX,WANGY,LIJ,et al.Genetic characteristics of an amikacin-resistant Brucella abortus strain first isolated from Marmota himalayana[J].Microb Pathog,2022,164,105402.
doi: 10.1016/j.micpath.2022.105402 |
| 25 |
YANGX W,LIUY,LIN,et al.Analysis of the Brucella melitensis epidemic in Xinjiang: genotyping, polymorphism, antibiotic resistance and tracing[J].Ann Clin Microbiol Antimicrob,2024,23(1):71.
doi: 10.1186/s12941-024-00724-0 |
| 26 | 薛红梅,田国忠,徐立青,等.三江源地区布鲁氏菌的药物敏感性研究[J].医学动物防制,2015,31(7):747-749. |
| XUEH M,TIANG Z,XUL Q,et al.Brucella drug susceptibility study of three river source region[J].Journal of Medical Pest Control,2015,31(7):747-749. | |
| 27 |
XUEH,LIJ,MAL,et al.Seroprevalence and molecular characterization of Brucella abortus from the Himalayan Marmot in Qinghai, China[J].Infect Drug Resist,2023,16,7721-7734.
doi: 10.2147/IDR.S436950 |
| 28 | 赵忠智,姜海,薛红梅,等.青海省羊种布鲁菌抗菌药物敏感性分析[J].医学动物防制,2025,41(02):128-131. |
| ZHAOZ Z,JIANGH,XUEH M,et al.Analysis of antimicrobial susceptibility of Brucella melitensisin Qinghai Province[J].Journal of Medical Pest Control,2025,41(02):128-131. | |
| 29 | 赵嘉咏,宋威蓉,张白帆,等.河南省2013-2022年羊种布鲁氏菌病原学特征分析[J].中华流行病学杂志,2024,45(11):1559-1565. |
| ZHAOJ Y,SONGW R,ZHANGB F,et al.Etiological characteristics of Brucella melitensis in Henan Province, 2013-2022[J].Chinese Journal of Epidemiology,2024,45(11):1559-1565. | |
| 30 | 石岩,耿忆敏,王景阁,等.平顶山市鲁山县19株布鲁氏菌的分型鉴定与体外药物敏感性分析[J].现代疾病预防控制,2025,36(2):150-153, 164. |
| SHIY,DIY M,WANGJ G,et al.Typing identification and in vitro drug sensitivity analysis of 19 Brucella strains isolated in Lushan County, Pingdingshan[J].Modern Disease Control and Prevention,2025,36(2):150-153, 164. | |
| 31 | 专行,陈平,张雅婷,等.2012—2023年湖北省人间布鲁氏菌株的药敏谱和病原学特征分析[J].中国人兽共患病学报,2024,40(11):1036-1041. |
| ZHUANX,CHENP,ZHANGY T,et al.Drug sensitivity spectrum and pathogenic characteristics of human Brucella strains in Hubei Province from 2012 to 2023[J].Chinese Journal of Zoonoses,2024,40(11):1036-1041. | |
| 32 | 左顺武,倪兆林,姚颖波,等.某市布鲁氏菌抗菌药的敏感性研究[J].中华劳动卫生职业病杂志,2017(12):939-941. |
| ZUOS W,NIZ L,YAOY B,et al.Study on antimicrobial susceptibility of Brucella in a city[J].Chinese Journal of Industrial Hygiene and Occupational Diseases,2017(12):939-941. | |
| 33 |
DESHMUKHA,HAGENF,SHARABASIO A,et al. In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Qatar between 2014-2015[J].BMC Microbiol,2015,15,121.
doi: 10.1186/s12866-015-0458-9 |
| 34 |
ARAPOVIĆJ,KOMPESG,DEDIĆK,et al.Antimicrobial resistance profiles of human Brucella melitensis isolates in three different microdilution broths: the first multicentre study in Bosnia and Herzegovina[J].J Glob Antimicrob Resist,2022,29,99-104.
doi: 10.1016/j.jgar.2022.02.005 |
| 35 |
MORADKASANIS,GOODARZIF,BEIGM,et al.Prevalence of Brucella melitensis and Brucella abortus aminoglycoside-resistant isolates: a systematic review and meta-analysis[J].Braz J Microbiol,2024,55(1):429-439.
doi: 10.1007/s42770-023-01233-6 |
| 36 |
BEIGM,EBRAHIMIE,MORADKASANIS,et al.Unravelling the challenge of cotrimoxazole and rifampin resistance in B. melitensis and B. abortus: A systematic review and meta-analysis[J].PLoS Negl Trop Dis,2024,18(12):e0012630.
doi: 10.1371/journal.pntd.0012630 |
| 37 |
REZAEI SHAHRABIA,MORADKASANIS,GOODARZIF,et al.Prevalence of Brucella melitensis and Brucella abortus tetracyclines resistance: A systematic review and meta-analysis[J].Microb Pathog,2023,183,106321.
doi: 10.1016/j.micpath.2023.106321 |
| 38 | 杨晓雯,赵鸿雁,朴东日,等.人工诱变利福平抗性布鲁氏菌转录组测序分析[J].中国人兽共患病学报,2020,36(10):7. |
| YANGX W,ZAOH Y,PUD R,et al.Transcriptional analysis of artificially induced rifampicin-resistant Brucella melitensis[J].Chinese Journal of Zoonoses,2020,36(10):7. | |
| 39 | 郑莹,马晓菁,刘丽娅,等.布鲁氏菌利福平耐药株rpoB基因突变特征分析[J].中华地方病学杂志,2024,43(2):94-97. |
| ZHENGY,MAX J,LIUL Y,et al.Mutation characteristics of rpoB gene in rifampicin-resistant Brucella strains[J].Chinese Journal of Endemiology,2024,43(2):94-97. | |
| 40 |
LIUX,WANGP,YUANN,et al.The (p)ppGpp synthetase Rsh promotes rifampicin tolerant persister cell formation in Brucella abortus by regulating the type Ⅱ toxin-antitoxin module mbcTA[J].Front Microbiol,2024,15,1395504.
doi: 10.3389/fmicb.2024.1395504 |
| 41 |
YANGX,WUT,LIUW,et al.Cell membrane components of Brucella melitensis play important roles in the resistance of low-level rifampicin[J].PLoS Negl Trop Dis,2020,14(12):e0008888.
doi: 10.1371/journal.pntd.0008888 |
| 42 |
YUANY,NINGW,CHENJ,et al.Serine/threonine protein kinase mediates rifampicin resistance in Brucella melitensis through interacting with ribosomal protein RpsD and affecting antioxidant capacity[J].mSystems,2025,10(1):e0110924.
doi: 10.1128/msystems.01109-24 |
| 43 |
BARBERÁNJ,DE LA CUERDAA,TEJEDA GONZÁLEZM I,et al.Safety of fluoroquinolones[J].Rev Esp Quimioter,2024,37(2):127-133.
doi: 10.37201/req/143.2023 |
| 44 | 崔生辉,李景云,马越.细菌对氟喹诺酮类药物的耐药机制[J].中国药房,2007,18(2):3. |
| CUIS H,LIY Y,MAY.Mechanism of bacterial resistance to fluoroquinolones[J].China Pharmacy,2007,18(2):3. | |
| 45 |
RODRÍGUEZ TARAZONAE,GARCÍA RODRÍGUEZJ Á,MUÑOZ BELLIDOJ L.Emergence of quinolone-resistant, topoisomerase-mutant Brucella after treatment with fluoroquinolones in a macrophage experimental infection model[J].Enferm Infecc Microbiol Clin,2015,33(4):248-252.
doi: 10.1016/j.eimc.2014.03.010 |
| 46 |
TURKMANIA,PSAROULAKIA,CHRISTIDOUA,et al.In vitro-selected resistance to fluoroquinolones in two Brucella strains associated with mutational changes in gyrA[J].Int J Antimicrob Agents,2008,32(3):227-232.
doi: 10.1016/j.ijantimicag.2008.03.012 |
| 47 |
KRAUSEK M,SERIOA W,KANET R,et al.Aminoglycosides: An Overview[J].Cold Spring Harb Perspect Med,2016,6(6):a027029.
doi: 10.1101/cshperspect.a027029 |
| 48 | BLASCOJ M,DÍAZR.Brucella melitensis Rev-1 vaccine as a cause of human brucellosis[J].Lancet,1993,342(8874):805. |
| 49 |
CLOECKAERTA,GRAYONM,GRéPINETO.Identification of Brucella melitensis vaccine strain Rev.1 by PCR-RFLP based on a mutation in the rpsL gene[J].Vaccine,2002,20(19-20):2546-2550.
doi: 10.1016/S0264-410X(02)00159-7 |
| 50 | 周师众,袁雅琴,宁文晴,等.羊种布鲁氏菌链霉素耐受基因筛选及鉴定[J].微生物学通报,2025,52(2):690-702. |
| ZHOUS Z,YUANY Q,NINGW Q,et al.Screening and identification of genes associated withstreptomycin resistance in Brucella melitensis[J].Microbiology China,2025,52(2):690-702. | |
| 51 | OBRANIĆS,BABIĆF,MOČIBOBM,et al.Ribosomal A site binding pattern differs between Arm methyltransferases from clinical pathogens and a natural producer of aminoglycosides[J].Int J Biol Macromol,2024,282(Pt 3):137015. |
| 52 | SHARMAD,GAUTAMS,SRIVASTAVAN,et al.Comparative proteomic analysis of cell wall proteins of aminoglycosides resistant and sensitive Mycobacterium tuberculosis clinical isolates[J].Curr Protein Pept Sci,2024, |
| 53 | GROSSMANT H.Tetracycline antibiotics and resistance[J].Cold Spring Harb Perspect Med,2016,6(4) |
| 54 |
GARCÍAP,GUIJARRO-SÁNCHEZP,LASARTE-MONTERRUBIOC,et al.Activity and resistance mechanisms of the third generation tetracyclines tigecycline, eravacycline and omadacycline against nationwide Spanish collections of carbapenemase-producing Enterobacterales and Acinetobacter baumannii[J].Biomed Pharmacother,2024,181,117666.
doi: 10.1016/j.biopha.2024.117666 |
| 55 |
JAGDMANNJ,ANDERSSOND I,NICOLOFFH.Low levels of tetracyclines select for a mutation that prevents the evolution of high-level resistance to tigecycline[J].PLoS Biol,2022,20(9):e3001808.
doi: 10.1371/journal.pbio.3001808 |
| 56 |
MOSERS,SETH-SMITHH,EGLIA,et al.Campylobacter jejuni from canine and bovine cases of campylobacteriosis express high antimicrobial resistance rates against (fluoro)quinolones and tetracyclines[J].Pathogens,2020,9(9):691.
doi: 10.3390/pathogens9090691 |
| 57 |
TANGH,LIUZ,HUB,et al.D-ring modifications of tetracyclines determine their ability to induce resistance genes in the environment[J].Environ Sci Technol,2024,58(2):1338-1348.
doi: 10.1021/acs.est.3c07559 |
| 58 | 冯新,韩文瑜,雷连成.细菌对四环素类抗生素的耐药机制研究进展[J].中国兽药杂志,2004,38(2):5. |
| FENGX,HANW Y,LEIL C.Advanced research in the bacterial resistance mechanisms of tetracycline[J].Chinese Journal of Veterinary Drug,2004,38(2):5. | |
| 59 |
BOULANGERM,TAILLANDIERJ F,HENRIJ,et al.Pharmacokinetic modeling of sulfamethoxazole-trimethoprim and sulfadiazine-trimethoprim combinations in broilers[J].Poult Sci,2024,103(11):104200.
doi: 10.1016/j.psj.2024.104200 |
| 60 | SUZUKIS,HOAP T.Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in indochina[J].Front Microbiol,2012,3,67. |
| 61 |
PASCUALD W,GOODWINZ I,BHAGYARAJE,et al.Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis[J].Front Microbiol,2022,13,1018165.
doi: 10.3389/fmicb.2022.1018165 |
| 62 |
QINY,XUY,LINF,et al.Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis[J].J Biomater Appl,2025,39(7):748-761.
doi: 10.1177/08853282241279340 |
| 63 |
DAWRES,DEVARAJANP V,SAMADA.Enhanced antibacterial activity of doxycycline and rifampicin combination loaded in nanoparticles against intracellular Brucella abortus[J].Curr Drug Deliv,2022,19(1):104-116.
doi: 10.2174/1567201818666210609164704 |
| 64 |
SELEEMM N,JAINN,POTHAYEEN,et al.Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline[J].FEMS Microbiol Lett,2009,294(1):24-31.
doi: 10.1111/j.1574-6968.2009.01530.x |
| 65 |
KARIMITABARZ,CHEGINIZ,SHOKOOHIZADEHL,et al.Use of the quantum dot-labeled solid lipid nanoparticles for delivery of streptomycin and hydroxychloroquine: A new therapeutic approach for treatment of intracellular Brucella abortus infection[J].Biomed Pharmacother,2023,158,114116.
doi: 10.1016/j.biopha.2022.114116 |
| 66 |
ELBEHIRYA,ALDUBAIBM,AL RUGAIEO,et al.Brucella species-induced brucellosis: Antimicrobial effects, potential resistance and toxicity of silver and gold nanosized particles[J].PLoS One,2022,17(7):e0269963.
doi: 10.1371/journal.pone.0269963 |
| 67 |
MAX,XIW,YANGD,et al.Collateral sensitivity between tetracyclines and aminoglycosides constrains resistance evolution in carbapenem-resistant Klebsiella pneumoniae[J].Drug Resist Updat,2023,68,100961.
doi: 10.1016/j.drup.2023.100961 |
| [1] | 严文岚, 冯宇, 薛天骐, 张子豪, 那仁毕力格, 蒋卉. 野生动物布鲁氏菌病流行现状与分析[J]. 畜牧兽医学报, 2025, 56(9): 4253-4266. |
| [2] | 王聪亮, 万仕成, 陈文博, 李剑南, 宋岩峰, 杜晓敏, 刘王叶, 李荣荣, 雷安民, 屈雷, 朱海鲸, 华进联. BLOC1S1基因过表达山羊的生产及生物安全评估[J]. 畜牧兽医学报, 2025, 56(9): 4328-4340. |
| [3] | 韦钰诗, 孙文, 庞晓敏, 王玉莲. 产超广谱β内酰胺酶和碳青霉烯酶肺炎克雷伯菌替加环素耐药性机制的初步分析[J]. 畜牧兽医学报, 2025, 56(7): 3507-3518. |
| [4] | 刘爱军, 黄晓兵, 张传亮, 张红丽. 布鲁氏菌与宿主天然免疫信号通路相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1561-1574. |
| [5] | 尤留超, 尹号, 陶政宇, 黄蓉, 付磊, 储岳峰. 布鲁氏菌毒力因子与胞内存活机制研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1575-1593. |
| [6] | 杨晓雯, 宁文晴, 周师众, 袁雅琴, 侯雪新, 丁家波. 一种羊种布鲁氏菌复方新诺明耐药株荧光定量PCR检测方法的建立[J]. 畜牧兽医学报, 2025, 56(3): 1465-1472. |
| [7] | 李案本, 符娜娜, 罗晓平, 李军燕, 刘阳. 捻转血矛线虫的耐药性及其干预途径研究进展[J]. 畜牧兽医学报, 2025, 56(2): 523-533. |
| [8] | 任文浩, 姚梦欣, 张乾艺, 徐艺玫, 郭伟, 陈创夫, 马忠臣, 王勇. 布鲁氏菌BtpA蛋白亚单位疫苗的制备及其对小鼠的免疫效果评价[J]. 畜牧兽医学报, 2025, 56(11): 5697-5705. |
| [9] | 王恒泰, 蒋卉, 李朋, 丁家波. 布鲁氏菌脂多糖的生物合成及其在免疫逃逸中的生物学功能[J]. 畜牧兽医学报, 2025, 56(10): 4863-4876. |
| [10] | 吴婷婷, 关飞虎, 郭嘉, 张璐, 朱德馨, 孙志华, 曹树珠, 徐艺玫, 张辉, 邓兴梅. 布鲁氏菌分泌蛋白BPE005缺失株的构建及其对GPR126/ADGRG6蛋白的影响[J]. 畜牧兽医学报, 2025, 56(10): 5104-5114. |
| [11] | 张雲龙, 王靖雷, 朱亚杰, 张明洁, 康澳, 周翔, 魏凯, 曹洪防, 李强, 王勇, 苏峰. RAA-DETECTOR布鲁氏菌核酸快速检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(10): 5115-5124. |
| [12] | 王恒泰, 吕浪, 蒋卉, 程君生, 刘铭赫, 储岳峰, 许健, 李朋, 丁家波. 牛种布鲁氏菌MgtC蛋白在抵抗低Mg2+环境中的生物学功能研究[J]. 畜牧兽医学报, 2025, 56(1): 365-377. |
| [13] | 赵灿奇, 冯宇, 吕浪, 李彦军, 魏玉磊, 丁家波, 陈祥, 蒋卉. 竞争ELISA和间接ELISA方法应用于牛布鲁氏菌病净化的研究[J]. 畜牧兽医学报, 2024, 55(5): 2146-2153. |
| [14] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
| [15] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||