[1] DAUGALIYEVA A, DAUGALIYEVA S, ABUTALIP A, et al. Study of epidemiological and molecular characteristics of Brucella strains circulating in Kazakhstan[J]. Vet Res Commun, 2025, 49(3): 156. [2] CAO X, LIU P, WU J, et al. Genome phylogenetic analysis of Brucella melitensis in Northwest China[J]. BMC Microbiol, 2025, 25(1): 208. [3] FERJANI A, BUIJZE H, KOPPRIO G, et al. A genomic characterization of clinical brucella melitensis isolates from tunisia: integration into the global population structure[J]. Microorganisms, 2025, 13(2): 243. [4] KALDS P, ZHOU S, CAI B, et al. Sheep and goat genome engineering: from random transgenesis to the CRISPR era[J]. Front Genet, 2019, 10: 750. [5] LOIS C, HONG E J, PEASE S, et al. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors[J]. Science, 2002, 295(5556): 868-872. [6] HOFMANN A, KESSLER B, EWERLING S, et al. Efficient transgenesis in farm animals by lentiviral vectors[J]. EMBO Rep, 2003, 4(11): 1054-1060. [7] HOFMANN A, ZAKHARTCHENKO V, WEPPERT M, et al. Generation of transgenic cattle by lentiviral gene transfer into oocytes[J]. Biol Reprod, 2004, 71(2): 405-409. [8] YANG S H, CHENG P H, BANTA H, et al. Towards a transgenic model of huntington’s disease in a non-human primate[J]. Nature, 2008, 453(7197): 921-924. [9] GÓMEZ M C, POPE C E, KUTNER R H, et al. Generation of domestic transgenic cloned kittens using lentivirus vectors[J]. Cloning Stem Cells, 2009, 11(1): 167-176. [10] CRISPO M, VILARIÑO M, DOS SANTOS N P C, et al. Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis[J]. Transgenic Res, 2015, 24(1): 31-41. [11] DENG S, WU Q, YU K, et al. Changes in the relative inflammatory responses in sheep cells overexpressing of toll-like receptor 4 when stimulated with LPS[J]. PLoS One, 2012, 7(10): e47118. [12] WANG S, SONG X, ZHANG K, et al. Overexpression of toll-like receptor 4 affects autophagy, oxidative stress, and inflammatory responses in monocytes of transgenic sheep[J]. Front Cell Dev Biol, 2020, 8: 248. [13] LI G, LV D, YAO Y, et al. Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota[J]. FASEB J, 2021, 35(9): e21783. [14] BROWN J L, VOTH J P, PERSON K, et al. A technological and regulatory review on human-animal chimera research: the current landscape of biology, law, and public opinion[J]. Cell Transplant, 2023, 32: 9636897231183112. [15] PU J, SCHINDLER C, JIA R, et al. BORC, a multisubunit complex that regulates lysosome positioning[J]. Dev Cell, 2015, 33(2): 176-188. [16] GUARDIA C M, FARÍAS G G, JIA R, et al. BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks[J]. Cell Rep, 2016, 17(8): 1950-1961. [17] PU J, KEREN K T, BONIFACINO J S. A ragulator-BORC interaction controls lysosome positioning in response to amino acid availability[J]. J Cell Biol, 2017, 216(12): 4183-4197. [18] STARCEVIC M, DELL A E C. Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1)[J]. J Biol Chem, 2004, 279(27): 28393-28401. [19] 万仕成, 张梦菲, 陈文博, 等. BLOC1S1促进山羊精原干细胞增殖[J]. 生物工程学报, 2023, 39(12): 4901-4914. WAN S C, ZHANG M F, CHEN W B, et al. BLOC1S1 promotes proliferation of goat spermatogonial stem cells[J]. Chinese Journal of Biotechnology, 2023, 39(12): 4901-4914.(in Chinese). [20] MILLER C N, SMITH E P, CUNDIFF J A, et al. A brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication[J]. Cell Host Microbe, 2017, 22(3): 317-329. [21] JIA R, GUARDIA C M, PU J, et al. BORC coordinates encounter and fusion of lysosomes with autophagosomes[J]. Autophagy, 2017, 13(10): 1648-1663. [22] BRIGHT M D, ITZHAK D N, WARDELL C P, et al. Cleavage of BLOC1S1 mRNA by IRE1 is sequence specific, temporally separate from XBP1 splicing, and dispensable for cell viability under acute endoplasmic reticulum stress[J]. Mol Cell Biol, 2015, 35(12): 2186-2202. [23] PANDEY A, LIN F, CABELLO A L, et al. Activation of Host IRE1α-dependent signaling axis contributes the intracellular parasitism of brucella melitensis[J]. Front Cell Infect Microbiol, 2018, 8: 103. [24] LIU Y, BAI X, FENG X, et al. Revolutionizing animal husbandry: breakthroughs in gene editing delivery systems[J]. Gene, 2025, 935: 149044. [25] SHAKWEER W M E, KRIVORUCHKO A Y, DESSOUKI S M, et al. A review of transgenic animal techniques and their applications[J]. J Genet Eng Biotechnol, 2023, 21(1): 55. [26] LEAL A F, HERRENO-PACHÓN A M, BENINCORE-FLÓREZ E, et al. Current strategies for increasing knock-in efficiency in CRISPR/Cas9-based approaches[J]. Int J Mol Sci, 2024, 25(5): 2456. [27] XU Y N, UHM S J, KOO B C, et al. Production of transgenic Korean native cattle expressing enhanced green fluorescent protein using a FIV-based lentiviral vector injected into MII oocytes[J]. J Genet Genomics, 2013, 40(1): 37-43. [28] HUNTER C V, TILEY L S, SANG H M. Developments in transgenic technology: applications for medicine[J]. Trends Mol Med, 2005, 11(6): 293-298. [29] WHITELAW C B. Transgenic livestock made easy[J]. Trends Biotechnol, 2004, 22(4): 157-169. [30] SALGADO B, RIVAS R B, PINTO D, et al. Genetically modified pigs lacking CD163 PSTII-domain-coding exon 13 are completely resistant to PRRSV infection[J]. Antiviral Res, 2024, 221: 105793. [31] YUAN M, ZHANG J, GAO Y, et al. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis[J]. J Biol Chem, 2021, 296: 100497. [32] FENG R, ZHAO J, ZHANG Q, et al. Generation of anti-mastitis gene-edited dairy goats with enhancing lysozyme expression by inflammatory regulatory sequence using ISDra2-TnpB system[J]. Adv Sci, 2024, 5: 2404408. [33] DENG S, LI G, ZHANG J, et al. Transgenic cloned sheep overexpressing ovine toll-like receptor 4[J]. Theriogenology, 2013, 80(1): 50-57. [34] NKHABINDZE B Z, MAGAGULA C N, EARNSHAW D, et al. Regulatory framework for genetically modified organisms in the Kingdom of Eswatini[J]. GM Crops Food, 2024, 15(1): 212-221. [35] SHARMA M K, LEE J, SHI H, et al. Effect of dietary inclusion of 25-hydroxyvitamin D3 and vitamin E on performance, gut health, oxidative status, and immune response in laying hens infected with coccidiosis[J]. Poult Sci, 2024, 103(9): 104033. [36] KOOPMANS L, SPOELDER M, BONGERS C, et al. The effect of lesser mealworm protein on exercise-induced muscle damage in active older adults: a randomized controlled trial[J]. J Nutr Health Aging, 2024, 28(5): 100204. [37] LIU Z, JIN P, LIU Y, et al. A comprehensive approach to lifestyle intervention based on a calorie-restricted diet ameliorates liver fat in overweight/obese patients with NAFLD: a multicenter randomized controlled trial in China[J]. Nutr J, 2024, 23(1): 64. [38] LV X, LIU Y, LIU S, et al. Metabonomics and pharmacodynamics studies of gentiana radix and wine-processed gentiana radix in damp-heat jaundice syndrome rats[J]. J Ethnopharmacol, 2024, 332: 118291. [39] ZHU C, LIU Y, XU H, et al. Production of second-generation sheep clones via somatic cell nuclear transfer using amniotic cells as nuclear donors[J]. Theriogenology, 2025, 232: 79-86. [40] YAO Y C, HAN H B, SONG X T, et al. Growth performance, reproductive traits and offspring survivability of genetically modified rams overexpressing toll-like receptor 4[J]. Theriogenology, 2017, 96: 103-110. [41] 柴孟龙. 抗病转基因羊胚胎生产、移植及后代生物安全评价研究[D]. 长春: 吉林农业大学, 2012. CHAI M L. Disease resistance transferred gene sheep embryo production, transplantation and future generations biosafety evaluation research[D]. Changchun:Jilin Agricultural University, 2012. (in Chinese) [42] JACKSON K A, BERG J M, MURRAY J D, et al. Evaluating the fitness of human lysozyme transgenic dairy goats: growth and reproductive traits[J]. Transgenic Res, 2010, 19(6): 977-986. [43] SMITH E P, COTTO R A, BORGHESAN E, et al. Epistatic interplay between type IV secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle[J]. mBio, 2020, 11(2): 3350. [44] STARR T, CHILD R, WEHRLY T D, et al. Selective subversion of autophagy complexes facilitates completion of the brucella intracellular cycle[J]. Cell Host Microbe, 2012, 11(1): 33-45. [45] CELLI J, TSOLIS R M. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?[J]. Nat Rev Microbiol, 2015, 13(2): 71-82. [46] WU K, SEYLANI A, WU J, et al. BLOC1S1/GCN5L1/BORCS1 is a critical mediator for the initiation of autolysosomal tubulation[J]. Autophagy, 2021, 17(11): 3707-3724. [47] WELLS K M, HE K, PANDEY A, CABELLO A, et al. Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense[J]. Elife, 2022, 11: e73625. |